修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

14 条数据
?? 中文(中国)
  • Dynamically Optimized Multi-Interface Novel BiSI-Promoted Redox Sites Spatially Separated N-p-n Double Heterojunctions BiSI/MoS2/CdS for Hydrogen Evolution

    摘要: Novel BiSI promoted n-p-n double heterojunctions multi-interface photocatalyst BiSI/MoS2/CdS was constructed. BiSI is applied to photocatalytic hydrogen evolution. It possesses a small band gap and a strong optical absorption coefficient, therefore, the optical absorption scope and coefficient of MoS2/CdS have been effectively enhanced by compounding with BiSI. The continuous heterojunctions strengthened the function of single junction and guided the carriers’ transfer direction, thus the redox reactions occur at spatially separated sites. Built-in electric field along the radial direction of BiSI nanorod and MoS2 interlayer helps to transport carriers within lifetime. Carrier dynamics is optimized by multi-interface structure. In general, a new material BiSI is introduced to construct a multi-interface structure to optimize carrier dynamics, which resulted in a 46-fold increase in hydrogen production efficiency.

    关键词: multi-interface,dynamics optimization,enhanced optical absorption,photocatalytic water splitting,n-p-n continuous heterojunctions,BiSI

    更新于2025-11-14 15:29:11

  • Organic/inorganic nitride heterostructure for efficient photocatalytic oxygen evolution

    摘要: Given the four-electron water oxidation reaction as the rate-limiting step for water splitting, highly efficient photocatalysts for oxygen evolution have been receiving increasing research attentions. In this study, an organic/inorganic g-C3N4/CoN nitride heterostructure was developed by a facile precipitation-nitridation two-step process. With the CoN loading amounts optimized, the obtained g-C3N4/CoN composite achieves more than 4-fold increase in photocatalytic activity for oxygen evolution, as compared to the pristine g-C3N4, with a highest oxygen evolution rate reaching 607.2 μmol h?1 g?1 under visible light (λ > 420 nm). It was demonstrated that the formed g-C3N4/CoN heterostructure could promote the interfacial charge carrier separation and the loaded CoN acting as an effective cocatalyst could accelerate the water oxidation reaction kinetics, which synergistically contributes to the great enhancement in photocatalytic activity for oxygen evolution. Interestingly, by physically mixing g-C3N4/CoN and g-C3N4/Ni, acting as oxygen and hydrogen production photocatalysts, respectively, the obtained composite could stably produce oxygen and hydrogen in the stoichiometric ratio from pure water under visible light (λ > 420 nm). Although the photocatalytic overall water splitting activity is still very low, this study demonstrates a facile and promising approach to develop visible-light active photocatalysts for simultaneous hydrogen and oxygen production from water, from the perspective of surface modification and bifunctional cocatalyst loading.

    关键词: Oxygen evolution,g-C3N4,Photocatalytic water splitting,Heterostructures

    更新于2025-09-23 15:23:52

  • Two-dimensional Janus PtSSe for photocatalytic water splitting under the visible or infrared light

    摘要: Recently, two-dimensional Janus materials have attracted increasing research interest due to their particular structure and great potential in electronics, optoelectronics and piezoelectronics. Here, we propose 2D Janus PtSSe with compelling photocatalytic properties which were investigated by means of first-principles calculations. 2D Janus PtSSe exhibits high thermal, dynamic and mechanical stability. Most remarkably, single-layer PtSSe exhibits an indirect band gap of 2.19 eV, high absorption coefficients in the visible light region, appropriate band edge positions and strong ability for carrier separation and transfer, thus rendering it a promising candidate for photocatalytic water splitting. Moreover, double-layer PtSSe compounds with different stacking configurations are extraordinary photocatalysts for water splitting even under infrared light, owing to their small band gaps as well as the built-in electrical field. Our results reveal 2D PtSSe with high experimental feasibility as a new platform for the overall water splitting reaction.

    关键词: two-dimensional Janus materials,first-principles calculations,photocatalytic water splitting,visible light,infrared light

    更新于2025-09-23 15:19:57

  • Construction of two dimensional Sr2Ta2O7/S-doped g-C3N4 nanocomposites with Pt cocatalyst for enhanced visible light photocatalytic performance

    摘要: Visible light-driven photocatalytic hydrogen production has been deemed a potential means to solve the increasingly serious energy shortage problem. Herein, two dimensional (2D) Sr2Ta2O7/S-doped g-C3N4 nanocomposites that applied in photocatalytic water reduction were fabricated through thermal condensation of thiourea with hydrothermal-prepared Sr2Ta2O7. The resulted Sr2Ta2O7/S-doped g-C3N4 nanocomposite exhibited enhanced hydrogen evolution rate (11.36 μmol g?1 h?1) under visible light irradiation, which is about 3.5 times higher than that of pure S-doped g-C3N4. In light of the UV–vis diffuse reflectance spectroscopy, Mott-Schottky curve and photoluminescence spectra, the enhanced photocatalytic performance could be mainly attributed to the conduction band difference between Sr2Ta2O7 and S-doped g-C3N4. In addition, transient photoluminescence spectra, electrochemical impedance spectra and photocurrent responses proved that the presence of Pt cocatalyst also plays an important role in facilitates the transport of photoexcited electron-hole pairs, subsequently promoting the photocatalytic performance.

    关键词: Sr2Ta2O7,Nanocomposite,g-C3N4,Photocatalytic water splitting

    更新于2025-09-19 17:15:36

  • Janus Chromium Dichalcogenides Monolayers with Low Carrier Recombination for Photocatalytic Overall Water-Splitting under Infrared Light

    摘要: Photocatalytic overall water-splitting is known as one of most promising methods to alleviate energy crisis. Searching for stable and efficient photocatalysts plays a critical role in this process. Here, we propose a novel class of Janus chromium dichalcogenides (CrXY, X/Y = S, Se, Te) monolayers serving as efficient photocatalysts for overall water-splitting under infrared light irradiation. We reveal that these Janus monolayers harbor an intrinsic dipole, which promotes the spatial separation of photo-generated carriers. More significantly, these systems exhibit suitable band gaps as well as band edge positions, enabling preeminent infrared optical absorption and high carrier mobility. Furthermore, the nonradiative recombination of photoinduced charge carriers in CrXY monolayers are evaluated based on time-domain density functional theory. The obtained long-lived excited carriers (~ 2 ns) are even comparable with that in transition-metal dichalcogenides heterostructures, which benefits for the photocatalytic reaction with high efficiency. Our results provide a new guidance for designing brand new photocatalytic systems with broad optical absorption and low carrier recombination.

    关键词: infrared light,first principles calculations,carrier recombination,Janus chromium dichalcogenides,photocatalytic water-splitting

    更新于2025-09-19 17:15:36

  • Type-II/type-II band alignment to boost spatial charge separation: A case study of g-C3N4 quantum dot/a-TiO2/r-TiO2 for highly efficient photocatalytic hydrogen and oxygen evolution

    摘要: Efficient spatial charge separation and transfer that are critical factors for solar energy conversion primarily depend on the energetic alignment of the band edges at interfaces in heterojunctions. Herein, we first report that constructing 0D/0D type-II(T-II)/T-II heterojunction is an effective strategy to ingeniously achieve long-range charge separation by taking a ternary heterojunction of TiO2 and graphitic carbon nitride (g-C3N4) as a proof-of-concept. Incorporating g-C3N4 quantum dots (QCN), as the third component, into the commercial P25 composed of anatase (a-TiO2) and rutile (r-TiO2) can be realized via simply mixing the commercially Degussa P25 and QCN solution followed by heat treatment. The strong coupling and matching band structures among a-TiO2, r-TiO2 and QCN result in the construction of novel T-II/T-II heterojunctions, which would promote the spatial separation and transfer of photogenerated electrons and holes. Moreover, QCN plays a key role in reinforcing light absorption. Specially, the unique 0D/0D architecture possesses the advantages of abundant active sites for photocatalytic reaction. As a result, the optimized QCN/a-TiO2/r-TiO2 heterojunctions exhibit enhanced photocatalytic H2 and O2 evolution, especially the hydrogen evolution rate (49.3 μmol h?1) is 11.7 times that of bare P25 under visible light irradiation, and sufficiently catalytic stability as evidenced by the recycling experiments. The remarkable enhanced photocatalytic activity can be attributed to the synergistic effects of the energy level alignment at interfaces, the dimensionality and component of the heterojunctions. This work provides a stepping stone towards the design of novel heterojunctions for photocatalytic water splitting.

    关键词: type-II/type-II band alignment,0D/0D heterojunction,photocatalytic water splitting,g-C3N4 quantum dots,TiO2

    更新于2025-09-19 17:13:59

  • Black/red phosphorus quantum dots for photocatalytic water splitting: from a type I heterostructure to a Z-scheme system

    摘要: By virtue of the quantum confinement effect, the junction between black phosphorus and red phosphorus changes from a type I heterostructure for bulk materials to a Z-scheme system for quantum dots. The Z-scheme system of black/red phosphorus quantum dots (BP/RP-QD) achieves H2 evolution from water splitting in the absence of sacrificial agents.

    关键词: red phosphorus,black phosphorus,quantum dots,photocatalytic water splitting,Z-scheme system

    更新于2025-09-12 10:27:22

  • Highly-efficient overall water splitting in 2D Janus group-III chalcogenide multilayers: the roles of intrinsic electric filed and vacancy defects

    摘要: Two-dimensional (2D) van der Waals materials have been widely adopted as photocatalysts for water splitting, but the energy conversion efficiency remains low. On the basis of first-principles calculations, we demonstrate that the 2D Janus group-III chalcogenide multilayers: InGaXY, M2XY and InGaX2 (M = In/Ga; X, Y = S/Se/Te), are promising photocatalysts for highly-efficient overall water splitting. The intrinsic electric field enhances the spatial separations of photogenerated carriers and alters the band alignment, which is more pronounced compared with the Janus monolayers. High solar-to-hydrogen (STH) efficiency with the upper limit of 38.5% was predicted in the Janus multilayers. More excitingly, the Ga vacancy of InGaSSe bilayer effectively lowers the overpotentials of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) to the levels provided solely by the photogenerated carriers. Our theoretical results suggest that the 2D Janus group-III chalcogenide multilayers could be utilized as highly efficient photocatalysts for overall water splitting without the needs of sacrificial reagents.

    关键词: Photocatalytic water splitting,Janus group-III chalcogenides,Intrinsic electric fields,First-principle calculation,Solar-to-hydrogen efficiency

    更新于2025-09-11 14:15:04

  • Two-dimensional CdS/g-C6N6 heterostructure used for visible light photocatalysis

    摘要: We have calculated and discussed the electronic and optical properties of two-dimensional (2D) CdS/g-C6N6 heterostructures by using hybrid density functional of HSE06. The CdS and g-C6N6 can form CdS/g-C6N6 heterostructures through weak van der Waals (vdW) interactions. The CdS/g-C6N6 composites are indirect bandgap semiconductors and type-II heterostructures. The visible light absorbtion of CdS/g-C6N6 composites is obviously improved, and the band alignment is bene?cial for spontaneous water redox reactions. Furthermore, the electrons migrating from CdS layer to g-C6N6 leads to the built-in electric ?eld formation, which promotes the e?ective separation of photogenerated carriers. These factors imply CdS/g-C6N6 composites are promising visible light water-splitting photocatalysts.

    关键词: CdS/g-C6N6,Hybrid density functional,Photocatalytic water-splitting,Heterostructure

    更新于2025-09-10 09:29:36

  • (TiO <sub/>2</sub> ) <sub/>1?x</sub> (TaON) <sub/>x</sub> Solid Solution for Band Engineering of Anatase TiO <sub/>2</sub>

    摘要: Band engineering of anatase TiO2 was achieved by means of an anatase (TiO2)1?x(TaON)x (TTON) solid solution. Epitaxial thin films of TTON (0.1 ≤ x ≤ 0.9) were synthesized by nitrogen plasma-assisted pulsed laser deposition on (LaAlO3)0.3(SrAl0.5Ta0.5O3)0.7 substrates. Epitaxial growth of anatase TTON was confirmed by X-ray diffraction. The lattice constants of the TTON thin films increased with TaON content in accordance with Vegard’s law, indicating formation of a complete solid solution. The bandgaps, band alignment, and refractive indices of the TTON thin films were investigated by combination of spectroscopic ellipsometry and X-ray photoelectron spectroscopy. The bandgap of the anatase TTON systematically decreased with increasing x, mainly because of an upward shift in the valence band maximum caused by broadening of the valence band as a result of hybridization of the shallow N 2p orbital. The position of the conduction band minimum was rather insensitive to chemical composition, which makes the band alignment of anatase TTON suitable for photocatalytic water splitting with visible light. The refractive index of anatase TTON monotonically increased with an increase in x.

    关键词: Epitaxial thin films,Vegard’s law,X-ray photoelectron spectroscopy,TTON solid solution,Band engineering,Photocatalytic water splitting,Spectroscopic ellipsometry,Nitrogen plasma-assisted pulsed laser deposition,Anatase TiO2

    更新于2025-09-10 09:29:36