修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

9 条数据
?? 中文(中国)
  • New insights into active-area-dependent performance of hybrid perovskite solar cells

    摘要: The morphology of hybrid perovskite thin films depends strongly on the processing parameters due to its complex crystallization kinetics from a solution to solid perovskite halide phase. It is also profoundly sensitive to the device area of the deposited thin film, and hence reproducible photoconversion efficiency (PCE) remained a bottleneck for the fabrication of efficient photovoltaic devices having large active area. The present work focuses on the investigations of the relationship between perovskite ink concentration-dependent quality of the perovskite overlayer and PCE of the perovskite solar cells (PSC) while scaling-up process. The field-emission scanning electron microscopy images revealed that the surface coverage of perovskite overlayer depends on the concentration of perovskite solution and device area. The active-area-dependent current density (J)-voltage (V) and external quantum efficiency measurements identify morphology-dependent variation in charge-transport/recombination pathways. We confirmed that among different precursor concentrations, 40 wt% perovskite ink is suitable to produce uniform perovskite overlayer over 1 cm2. As a result, highly reproducible PCE * 13% has been achieved for the PSC having an active area of 1 cm2. Overall, our findings significantly provide new insights into the active-area-dependent PCE of PSC.

    关键词: morphology,hybrid perovskite,charge-transport,photoconversion efficiency,solar cells,recombination pathways

    更新于2025-11-19 16:56:42

  • Time Dependent Facile Hydrothermal Synthesis of TiO2 Nanorods and their Photoelectrochemical Applications

    摘要: In the present investigation, we report facile hydrothermal synthesis of TiO2 nanorods with high density rutile phase on Transparent Conducting Oxide (TCO) for enhanced solar cell application. The structural, optical, morphological, compositional and electrochemical properties are investigated by detailed XRD, UV-Vis-NIR spectrophotometer, FESEM, TEM, EDAX, XPS and photoelectrochemical studies. It is demonstrated that, the deposited TiO2 thin film shows pure rutile phase with tetragonal crystal structure. Optical spectra showed strong light absorption in UV region and FESEM images confirm the time dependent growth of TiO2 nanorods. EDAX and XPS Spectra confirm the formation of pure TiO2 nanorods. Photoelectrochemical performance with respect to time dependent growth of TiO2 nanorods showed highest photoconversion efficiency = 5.1%.

    关键词: Hydrothermal synthesis,Photoelectrochemical cell property,Single crystalline,Photoconversion efficiency,TiO2 nanorods,Transparent conducting oxide (TCO)

    更新于2025-09-23 15:21:21

  • Influence of the meso-substituents of zinc porphyrins in dye-sensitized solar cell efficiency with improved performance under short periods of white light illumination

    摘要: The sensitization activity of four zinc metalloporphyrin dyes: meso-tetrakis(4-pyridyl)porphyrinato Zn(II) (a), meso-triphenyl-(4-carboxyphenyl)porphyrinato Zn(II) (b), meso-tetrakis(4-carboxyphenyl)porphyrinato Zn(II) (c) and meso-tripyridyl(4-carboxyphenyl)porphyrinato Zn(II) (d) is reported here, in terms of current-potential curve, open-circuit potential, fill factor, and overall solar energy conversion efficiency which have been evaluated under 100 mW/cm2 light intensity and their performances compared to the benchmark N719 (di-tetrabutylammonium cis-bis(isothiocyanato)bis(2,2′-bipyridyl-4,4′-dicarboxylato) ruthenium(II). This work focus the structural aspects of dyes with anchoring groups using TiO2-based Dye Sensitized Solar Cells (DSSCs), which includes pyridyl and carboxyphenyl acid groups and argue how the combination of both anchoring groups, in the same structure, may allow relevant optimization of DSSCs performance in the near future. Also, a noticeable improvement in the photovoltaic performance of all dyes, reaching a maximum increase from 25% to 69% in the overall DSSC efficiency under short periods of white light illumination is discussed.

    关键词: Dye sensitized solar cells (DSSCs),Macrocycles,Carboxylic acid anchoring group,Dyes,Photoconversion efficiency,TiO2,Metalloporphyrin

    更新于2025-09-23 15:19:57

  • Effect of co-sensitization of InSb quantum dots on enhancing the photoconversion efficiency of CdS based quantum dot sensitized solar cells

    摘要: The effect of co-sensitization of CdS and InSb Quantum Dots (QDs) on the enhancement of efficiency of Quantum Dots Sensitized Solar Cells (QDSSCs) has been investigated. InSb is synthesized by a facile solvothermal method using indium metal particles and antimony trichloride as precursors. From TEM images the average particle size of InSb was found to be less than 25 nm. The I–V data showed photoconversion efficiency (PCE) of 0.8% using InSb QDs as a sensitizer layer for QDSSC. However, co-sensitization of InSb QDs and CdS QDs on the TiO2 photoanode in QDSSCs showed an enhanced PCE of 4.94% compared to that of CdS sensitized solar cells (3.52%). The InSb QD layer broadens the light absorption range with reduced spectral overlap causing an improvement in light harvesting along with suppression of surface defects which reduced the recombination losses. As a result, co-sensitized TiO2/CdS/InSb QDSSC exhibits a greatly improved PCE of 4.94%, which is 40% higher than that of TiO2/CdS (3.52%) based QDSSCs due to improved light absorption with low recombination losses.

    关键词: quantum dot sensitized solar cells,co-sensitization,photoconversion efficiency,CdS,InSb quantum dots

    更新于2025-09-23 15:19:57

  • A study on the fabrication and characterization of dye-sensitized solar cells with Amaranthus red and Lawsonia inermis as sensitizers with maximum absorption of visible light

    摘要: Dye-sensitized solar cells (DSSC) were fabricated with dyes extracted from the leaves of Amaranthus red and Lawsonia inermis (Henna). A total of ten dyes were synthesized using solvents like distilled water, acetone and ethanol. UV–Vis spectroscopy was taken for all the dyes prepared. FTIR was taken for the dyes which had maximum absorption in the visible region. FTO substrates coated with nanosized TiO2 sensitized with dyes extracted were the photoanodes. Counter cathode was primed using graphene-coated FTO films. Two solar cells have been made up with the efficient dyes prepared from Amaranthus and Henna. J–V characterization performed for the cells showed that the solar cell fabricated with Amaranthus dye was efficient with the photoconversion efficiency and fill factor of 0.14% and 0.3864, respectively, compared to the cells fabricated using Henna dye whose photoconversion efficiency and fill factor are 0.09% and 0.3851, respectively.

    关键词: UV–Vis spectroscopy,Lawsonia inermis,FTIR,Photoconversion efficiency,Dye-sensitized solar cells,Amaranthus red

    更新于2025-09-19 17:13:59

  • Charge Transport between Coaxial Polymer Nanorods and Grafted All-Inorganic Perovskite Nanocrystals for Hybrid Organic Solar Cells with Enhanced Photoconversion Efficiency

    摘要: The versatile optoelectronics properties of perovskite nanocrystals (NCs) have provided a strong surge for their utilization in different classes of solar cells, organic photovoltaic (OPV) systems being no exception. In an unprecedented approach, a hybrid solar cell with CsPbBr1.5I1.5 NCs strategically grafted on poly(3-hexylthiophene-2,5-diyl) (P3HT) nanorods (NRs) is shown to have a photoconversion efficiency (PCE) of 9.72 ± 0.4 %, with only 1.5 wt% NCs. The improvement is twice more than the P3HT:PCBM reference devices (4.09 ± 0.2 %). The choice of NC composition is validated by Density Functional Theory (DFT) calculations which show decent charge carrier mobility in CsPbBr1.5I1.5, besides having better stability than CsPbI3, making CsPbBr1.5I1.5 NCs suitable contender for hybrid device architecture. A trivial blending of the NCs in P3HT:PCBM matrix results in their non-uniform distribution, escalating charge carrier trapping, albeit maintaining a device efficiency of 8.07 ± 0.3 % with 1 wt% NCs. Uniform NC grafting is propitious over inhomogeneous blending since CsPbBr1.5I1.5 NCs not only act as additional light harvesters, but their chemical grafting onto the P3HT NRs improves the charge transport by creating better charge percolation pathways. The higher crystallinity of the P3HT NRs than P3HT also helps in reducing the trap states.

    关键词: P3HT nanorods,charge transport,perovskite nanocrystals,photoconversion efficiency,hybrid solar cells

    更新于2025-09-12 10:27:22

  • High efficiency dye-sensitized solar cells with <i>V</i> <sub/>OC</sub> – <i>J</i> <sub/>SC</sub> trade off eradication by interfacial engineering of the photoanode|electrolyte interface

    摘要: Interfacial modification of the photoanode|electrolyte interface using oleic acid (OA) is thoroughly investigated in this present study. The overall photoconversion efficiency of 11.8% was achieved under the illumination of 100 mW cm?2 with an optical filter of AM 1.5 G. OA molecules were meant to be adsorbed on to the vacant areas of the TiO2 and the OA moieties leached out the aggregated C106 dye molecules from the TiO2 surface. There was a strong spectral overlap between the absorption spectrum of donor (OA) and the emission spectrum of acceptor (C106), leading to effective F?rster Resonance Energy Transfer (FRET) between OA and C106 and suggested an excellent opportunity to improve the photovoltaic performances of DSSCs. UV-vis DRS and UPS analysis revealed that OA molecules created new surface (mid-gap energy) states (SS) in TiO2 and these SS played a major role in the electron transport kinetics. Mott–Schottky analysis of DSSCs under dark conditions was carried out to find the shift in the flat band potential of TiO2 upon OA modification. Surprisingly, no trade off between VOC and JSC was observed after interfacial modification with OA. The dynamics of charge recombination and electron transport at the photoanode|electrolyte interface were studied in detail using electrochemical impedance spectroscopy.

    关键词: interfacial engineering,F?rster Resonance Energy Transfer,oleic acid,photoconversion efficiency,dye-sensitized solar cells

    更新于2025-09-12 10:27:22

  • Efficient solar-driven electrocatalytic CO2 reduction in a redox-medium-assisted system

    摘要: Solar-driven electrochemical carbon dioxide (CO2) reduction is capable of producing value-added chemicals and represents a potential route to alleviate carbon footprint in the global environment. However, the ever-changing sunlight illumination presents a substantial impediment of maintaining high electrocatalytic efficiency and stability for practical applications. Inspired by green plant photosynthesis with separate light reaction and (dark) carbon fixation steps, herein, we developed a redox-medium-assisted system that proceeds water oxidation with a nickel-iron hydroxide electrode under light illumination and stores the reduction energy using a zinc/zincate redox, which can be controllably released to spontaneously reduce CO2 into carbon monoxide (CO) with a gold nanocatalyst in dark condition. This redox-medium-assisted system enables a record-high solar-to-CO photoconversion efficiency of 15.6% under 1-sun intensity, and an outstanding electric energy efficiency of 63%. Furthermore, it allows a unique tuning capability of the solar-to-CO efficiency and selectivity by the current density applied during the carbon fixation.

    关键词: solar-driven,electric energy efficiency,solar-to-CO photoconversion efficiency,redox-medium-assisted system,electrocatalytic CO2 reduction

    更新于2025-09-09 09:28:46

  • Performance of 7-cells Dye Sensitized Solar Module in Z-type Series Interconnection

    摘要: Dye sensitized solar cells (DSSC) is becoming attractive research topic as third generation solar cells technology since it provides clean energy and low cost fabrication. In this study, DSSC was fabricated into module scale, which is important for practical applications. The module was prepared in sandwich structure consisting of TiO2 working electrode and Pt counter electrode on conductive substrate with an area of 100 mm x 100 mm, which was distributed into seven active cells. TiO2 paste was deposited on FTO glass as working electrode with a size of 10 mm x 98 mm per unit cell by screen printing method. Each cell was connected in Z-type series that able to produce high voltage. ?? ? ?? measurement was applied in two methods consisting of laboratory testing using sun simulator under 500 W/m2 of illumination and outdoor testing using a digital multimeter under direct sunlight. The result shows that DSSC module has photoconversion efficiency of 1.08% and 1.17% for laboratory and outdoor testing, respectively. The module was also tested in three different times to monitor its stability performance.

    关键词: Z-type series interconnection,Dye sensitized solar cells,stability performance,photoconversion efficiency,DSSC module

    更新于2025-09-09 09:28:46