修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Photobiological properties of phthalocyanine photosensitizers Photosens, Holosens and Phthalosens: A comparative in vitro analysis

    摘要: Photobiological properties of phthalocyanine photosensitizers, namely, clinically approved Photosens and new compounds Holosens and Phthalosens were analyzed on transitional cell carcinoma of the urinary bladder (T24) and human hepatic adenocarcinoma (SK-HEP-1). Photosens is a sulfated aluminum phthalocyanine with the number of sulfo groups 3.4, which is characterized by a high degree of hydrophilicity, slow cellular uptake, localization in lysosomes and the lowest photodynamic activity. Holosens is an octacholine zinc phthalocyanine, a cationic compound with significant charge. Holosens more efficiently enters the cells; it is localized in Golgi apparatus in addition to lysosomes and exhibits a significant inhibitory effect on cell viability upon irradiation. The highest photodynamic activity was demostrated by Phthalosens. Phthalosens is a metal-free analog of Photosens with a number of sulfo groups 2.5, which determines its amphiphilicity. Phthalosens is characterized by the highest rate of cellular uptake through the outer cell membrane, localization in cell membrane as well as in lysosomes and Golgi apparatus, and the highest activity upon irradiation among the photosensitizers studied. In general, changes in the physicochemical properties of Holosens and Phthalosens ensured an increase in their efficiency in vitro compared to Photosens. The features of accumulation, intracellular distribution and their interrelation with photodynamic activity, revealed in this work, indicate the prospects of Phthalosens and Holosens for clinical practice.

    关键词: Photodynamic treatment,photodynamic activity,Holosens,dark toxicity,Phthalosens,Photosens,intracellular distribution,phthalocyanines

    更新于2025-09-23 15:23:52

  • Raman spectroscopic characterisation of photo-active keratin doped with Methylene Blue for wound dressings and tissue engineering

    摘要: BACKGROUND: The design of wound dressings with extraordinary functionalities that fully address the problem of wound healing is an ambitious challenge in biomedical ?eld. Keratin is a protein most abundant in nature, being the major component of wool, feather, hair, etc., with promising applications in biomedical and regenerative medicine ?elds. A high level of antibacterial functionality is another desirable property for applications in biomedical ?eld in response to the increasing resistance of bacteria to antibiotics. One of the emerging methods of disinfection and sterilization is the antimicrobial photodynamic therapy (APDT), which uses light combined to a photosensitizer and oxygen to produce phototoxic species. OBJECTIVE: Biomatrices (photo-active keratin) made of wool keratin functionalized with methylene blue, a powerful photo-sensitizer, have been developed and tested as systems that combine the bioactive properties with the antimicrobial photodynamic functionality. METHODS: The biomatrix resistance to photo-degradation and the formation of reactive oxygen species were evaluated by spectroscopic methods, whereas the antibacterial properties were tested towards gram-positive bacteria. RESULTS: The Raman analysis revealed that speci?c damages occur at sensitive amino acid sites, selectively, rather than indiscriminately. However, keratin resulted to be a suitable biomaterial for APDT, since it has enough resistance to photo-degradation and the radical-induced oxidation is not able to induce strong structural changes in the protein. CONCLUSIONS: The results clearly indicate the potential use of these novel photo-active keratin biomatrices in wound dressing and tissue engineering.

    关键词: reactive oxygen species,Raman spectroscopy,antimicrobial photodynamic activity,Keratin

    更新于2025-09-10 09:29:36