- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Preclinical Study of Biofunctional Polymer-Coated Upconversion Nanoparticles
摘要: Upconversion nanoparticles (UCNPs) are new-generation photoluminescent nanomaterials gaining considerable recognition in the life sciences due to their unique optical properties that allow high-contrast imaging in cells and tissues. UCNP applications in optical diagnosis, bioassays, therapeutics, photodynamic therapy, drug delivery, and light-controlled release of drugs are promising, demanding a comprehensive systematic study of their pharmacological properties. We report on production of biofunctional UCNP-based nanocomplexes suitable for optical microscopy and imaging of HER2-positive cells and tumors, as well as on the comprehensive evaluation of their pharmacokinetics, pharmacodynamics, and toxicological properties using cells and laboratory animals. The nanocomplexes represent a UCNP core/shell structure of the NaYF4:Yb,Er,Tm/NaYF4 composition coated with an amphiphilic alternating copolymer of maleic anhydride with 1-octadecene (PMAO) and conjugated to the Designed Ankyrin Repeat Protein (DARPin9-29) with high affinity to the HER2 receptor. We demonstrated the specific binding of UCNP-PMAO-DARPin to HER2-positive cancer cells in cultures and xenograft animal models allowing the tumor visualization for at least 24 h. An exhaustive study of the general and specific toxicity of UCNP-PMAO-DARPin including the evaluation of their allergenic, immunotoxic, and reprotoxic properties was carried out. The obtained experimental body of evidence leads to a conclusion that UCNP-PMAO and UCNP-PMAO-DARPin are functional, non-cytotoxic, biocompatible, and safe for imaging applications in cells, small animals, and prospective clinical applications of image-guided surgery.
关键词: nanotoxicology,pharmacodynamics,pharmacokinetics,animal imaging,upconversion nanoparticles,photoluminescent nanomaterials
更新于2025-11-21 11:08:12
-
Synthesis of carbon quantum dots from lac dye for silicon dioxide imaging and highly sensitive ethanol detecting
摘要: This study aimed to improve the fluorescence performance of lac dye by preparing carbon quantum dots in an attempt to diversify the applicability of lac dye in fluorescence detection. The highly photoluminescent (PL) ld-CQDs were synthesized for the first time using lac dye as a precursor by a facile, green, one-pot ethanol thermal method. The ld-CQDs were neither soluble nor dispersed in water, but could be dissolved or dispersed in organic solvents. The ld-CQDs were well dispersed in ethanol with a mean diameter of 1.76 nm and were found to emit a bright yellow fluorescence with an emission wavelength of 570 nm. The quantum yield of ld-CQDs was 0.40, which was a significant 20-fold improvement over the lac dye of 0.02. Meanwhile, ld-CQDs exhibited pH-sensitive and excellent affinity for silicon dioxide without further chemical modification. Further, ld-CQDs could be used to image silicon dioxide since the fluorescence intensity of the ld-CQDs/silicon dioxide composites was significantly improved. Furthermore, the ld-CQDs could be used as a highly sensitive fluorescent probe to detect the ethanol content of commercial wines. In conclusion, this study has demonstrated the novel application of the fluorescence properties of the lac dye, which has utility in visual detection applications and in tracking the detection of silicon dioxide and ethanol.
关键词: novel application,carbon quantum dots,photoluminescent,Lac dye
更新于2025-11-20 15:33:11
-
Broad-Spectrum Tunable Photoluminescent Material Based on Cascade Fluorescence Resonance Energy Transfer between Three Fluorophores Encapsulated within the Self-Assembled Surfactant Systems
摘要: A broad spectrum tunable photoluminescent material with dual encryption based on a two-step Fluorescence Resonance Energy Transfer (FRET) between Pyrene (Py), Coumarin480 (Cou480) and Rhodamine6G (R6G) in micelles of SDS and bmimDS is presented. The phenomenon is achievable due to the encapsulation of the fluorophores within these micelles. The transfer of energy as FRET between the pair Py and Cou480 showed ON at 336 nm and OFF at 402 nm in contrast to the FRET observed between the pair Cou480 and R6G that showed ON at 402nm and OFF at 336 nm. However, the transfer of energy as FRET occurs from Py to R6G in the presence of Cou480 when excited at 336 nm, thereby making it a chain of three fluorophores with Cou480 acting as a relay fluorophore receiving energy from Py and transferring it to R6G. The different FRET scenarios between the three fluorophores in micelles provide a window for the generation of a matrix of colors, which occupies a significant 2D area in the chromaticity diagram, having potential applications in security printing. The different fluorophoric ratios generate different colors based on their individual photonic emissions and the FRET processes taking place between them. Writing tests were carried out using varied ratios of the fluorophores in the micellar systems producing different colored outputs under the UV light with insignificant visibility under the white light. We envision that this as-discovered three fluorophoric FRET system could form the basis for the future development of multi-FRET light-harvesting devices and anti-counterfeiting security inks based on much simpler non-covalent interaction aided encapsulation of the fluorophores within the self-assembled soft systems.
关键词: micelles,security printing,Rhodamine6G (R6G),SDS,Pyrene (Py),Coumarin480 (Cou480),bmimDS,Fluorescence Resonance Energy Transfer (FRET),photoluminescent material
更新于2025-11-19 16:46:39
-
Quantum Dots and Applications
摘要: It is the unique size-dependent band gap of quantum dots (QDs) that makes them so special in various applications. They have attracted great interest, especially in optoelectronic ?elds such as light emitting diodes and photovoltaic cells, because their photoluminescent characteristics can be signi?cantly improved via optimization of the processes by which they are synthesized. Control of their core/shell heterostructures is especially important and advantageous. However, a few challenges remain to be overcome before QD-based devices can completely replace current optoelectronic technology. This Special Issue provides detailed guides for synthesis of high-quality QDs and their applications. In terms of fabricating devices, tailoring optical properties of QDs and engineering defects in QD-related interfaces for higher performance remain important issues to be addressed.
关键词: quantum dots,luminescent solar concentrator,photoluminescent,photovoltaic,photodetector,charge transfer,electroluminescent
更新于2025-09-23 15:19:57
-
Controllable synthesis of all inorganic lead halide perovskite nanocrystals and white light-emitting diodes based on CsPbBr3 nanocrystals
摘要: The colloidal cesium lead halide perovskite nanocrystals (NCs) have attracted much attention over the past five years as a promising class of material with potential application in wide-color-gamut backlight display because of their high photoluminescence quantum yield (PLQY) and narrow-band emission (full-width at half-maximum, FWHM < 35 nm). To controllably synthesize perovskite NCs, the effects of reaction temperature and reaction time on structure, morphology, particle size and photoluminescence (PL) properties of the NCs were systematically investigated in this article. Based on these results, the formation kinetics of the perovskite NCs was analyzed and disclosed in further. Finally, a white light-emitting diode (WLED) was prepared by using synthesized CsPbBr3 NCs and K2SiF6:Mn4+ phosphors as the color converters. The WLED exhibits the bright white emission with a CIE chromaticity coordinate of (0.389, 0.376) and a wide color gamut of 123% of NTSC, indicating a potential application in the field of wide color gamut displays in the future.
关键词: Cesium lead halide perovskite,white light-emitting diodes,photoluminescent,hot-injection method,nanocrystals
更新于2025-09-23 15:19:57
-
Bulk polycrystalline ceriaa??doped Al <sub/>2</sub> O <sub/>3</sub> and YAG ceramics for high-power density laser-driven solid-state white lighting: Effects of crystallinity and extreme temperatures
摘要: Here, we develop and characterize high thermal conductivity/high thermal shock-resistant bulk Ce-doped Al2O3 and propose it as a new phosphor converting capping layer for high-powered/high-brightness solid-state white lighting (SSWL). The bulk, dense Ce:Al2O3 ceramics have a 0.5 at.% Ce:Al concentration (significantly higher than the equilibrium solubility limit) and were produced using a simultaneous solid-state reactive current activated pressure-assisted densification (CAPAD) approach. Ce:Al2O3 exhibits a broadband emission from 400 to 600 nm, which encompasses the entire blue and green portions of the visible spectrum when pumped with ultraviolet (UV) light that is now commercially available in UV light–emitting devices and laser diodes (LD). These broadband phosphors can be used in the commonly used scheme of mixing with other UV-converting capping layers that emit red light to produce white light. Alternatively, they can be used in a novel composite down-converter approach that ensures improved thermal–mechanical properties of the converting phosphor capping layer. In this configuration, Ce:Al2O3 is used with proven phosphor conversion materials such as Ce:YAG as an active encapsulant or as a capping layer to produce SSWL with an improved bandwidth in the blue portion of the visible spectrum. To study the effect of crystallinity on the Ce photoluminescent (PL) emission, we synthesize Ce:YAG ceramics using high-pressure CAPAD at moderate temperatures to obtain varying crystallinity (amorphous through fully crystalline). We investigate the PL characteristics of Ce:Al2O3 and Ce:YAG from 295 to 4 K, revealing unique crystal field effects from the matrix on the Ce dopants. The unique PL properties in conjunction with the superior thermal–mechanical properties of Ce:Al2O3 can be used in high-powered/high-brightness–integrated devices based on high-efficiency UV-LD that do not suffer efficiency droop at high drive currents to pump the solid-state capping phosphors.
关键词: thermal conductivity,photoluminescent emission,high-power density,Ce-doped Al2O3,thermal shock-resistant,crystal field effects,solid-state white lighting,laser-driven,Ce:YAG
更新于2025-09-19 17:13:59
-
One-pot synthesis of N, S co-doped photoluminescent carbon quantum dots for Hg2+ ion detection
摘要: N and S co-doped carbon quantum dots (N, S-CQDs) with a high fluorescence quantum yield (12.6%) were synthesized by a one-pot hydrothermal method. Results indicate that the N, S-CQDs have a small particle size and an amorphous structure, exhibiting unique surface states and excitation wavelength-independent fluorescent properties. Co-doping of N and S increases the electron-transfer rate and improves the coordination interaction between the N, S-CQDs and Hg2+ ions. The N, S-CQDs show a high sensitivity and selectivity in detecting Hg2+ ions even for a lake water sample. They are promising fluorescence probes for environmental monitoring.
关键词: Hg2+ ions detection,Co-doped,L-cysteine,Photoluminescent,Carbon quantum dots
更新于2025-09-19 17:13:59
-
Cu( <scp>i</scp> )a??I coordination polymers as the possible substitutes of lanthanides as downshifters for increasing the conversion efficiency of solar cells
摘要: This study tries to provide new solutions to increase the e?ciency of conversion of photons in solar cells, using photoluminescent Cu(I) coordination polymers (CPs) as possible alternative materials of lower cost, than those used today, based on lanthanides. The selected CP of chemical formula [Cu(NH2MeIN)I]n (NH2MeIN = methyl, 2-amino isonicotinate) absorbs in the utraviolet and emits in the visible region, being also easily nanoprocessable, by a simple and one-pot bottom-up approach. Nano?bers of this CP can be embedded in organic matrices such as ethyl vinyl acetate (EVA), forming transparent and homogenous ?lms, with a thermal stability of up to approximately 150 °C. These new materials maintain the optical pro-perties of the CP used as a dopant, ([Cu(NH2MeIN)I]n), with emission in yellow (570 nm) at 300 K, which is intensi?ed when the working temperature is lowered. In addition, these materials can be prepared with varying thicknesses, from a few microns to a few hundred nanometers, depending on the deposition method used (drop casting or spin coating respectively). The study of their external quantum e?ciency (EQE) found an increase in the UV range, which translates into an increase in the conversion e?ciency. The optimal CP concentration is 5% by weight in order to not diminish the transparency of the composite material. The calculated cost on the possible incorporation of this material into solar cells shows a 50% decrease over the cost reported in similar studies based on the use of lanthanides.
关键词: EVA,photoluminescent,Cu(I) coordination polymers,solar cells,downshifters,external quantum efficiency
更新于2025-09-19 17:13:59
-
Facile synthesis and color conversion of Cu-doped ZnSe quantum dots in an aqueous solution
摘要: A facile growth-doping method in aqueous solution has been developed to synthesize Cu-doped ZnSe (ZnSe:Cu) QDs by using thioglycolic acid (TGA) as a stabilizer. The effects of the Cu doping concentration, reaction temperature and pH value on the synthesis of ZnSe:Cu QDs were investigated systematically. The as-synthesized ZnSe:Cu QDs with an excellent green emission still belong to a cubic zinc blende crystalline structure, and the average particle size is approximately 3.0 nm. The photoluminescent quantum yield (PLQY) is as high as 20%, and the exciton radiative lifetime is approximately 113.8 ns. Moreover, the patterned ZnSe:Cu QDs thin films have been successfully fabricated by using an inkjet printing method to verify the ability of the potential application to the color conversion. With the assistance of 5.5 pair distributed bragg reflector (DBR) structures, the color coordinate of the ZnSe:Cu QDs thin film excited by the blue LEDs is located at (0.2182, 0.4352) and the intensity of PL peak located at 513 nm reaches to be 45.1%. In addition, the PLQY of color conversion-based ZnSe:Cu QDs thin film is approximately 9.64%. Based on these results, ZnSe:Cu QDs are potentially useful for the fabrication of optoelectronic devices, especially QDs photoluminescence and electroluminescence.
关键词: color conversion,Cu-doped ZnSe QDs,photoluminescent quantum yield,inkjet printing,aqueous solution
更新于2025-09-16 10:30:52
-
Light-controlled efficient photoluminescence based on an europium β-diketonate complex with single-crystal-to-single-crystal [2+2] cycloaddition
摘要: A brand new europium(III) b-diketonate complex undergoes a single-crystal-to-single-crystal transformation via [2+2] cycloaddition after UV irradiation, triggering strong Eu(III) red emission turn-on, which is highly photostable even after 50 hours of irradiation. A photo-patterning process is successfully conducted for security printing application in materials science.
关键词: lanthanide complexes,single-crystal-to-single-crystal transformation,security printing,UV irradiation,photoluminescent
更新于2025-09-16 10:30:52