- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
[IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Coherent Coupling of Single Molecules to Microresonators
摘要: Many interesting proposals in quantum optics and light-matter interaction rely on having multiple quantum emitters well-coupled to a single mode of light. Of particular interest are cases where several identical emitters couple to a one-dimensional (1D) photonic medium. Recently, we presented such a system by evanescent coupling of organic dye molecules to the same guided mode of an on-chip subwavelength waveguide [1]. While this coupling allowed us to demonstrate up to 7.5% transmission extinction of the propagating light by a single molecule, it is still not sufficient for achieving higher-order effects such as photon-mediated interaction of multiple emitters coupled to the same waveguide. One way to improve the waveguide-emitter coupling is the use of resonant structures, as was recently shown in our laboratory for a microscopic open Fabry-Perot cavity [2]. In that work, we demonstrated a strong Purcell broadening of the molecular emission, and almost complete extinction of the resonant cavity transmission. In the current work, we extended this approach to on-chip racetrack resonators [3], as shown in Fig. 1(a). In such a geometry, the coupling enhancement is proportional to the number of photon round trips inside the resonator, which is roughly equal to F/π, where F is the resonator finesse. Currently, our resonators can reach finesse as high as 18 when exposed to the surrounding organic matrix at cryogenic temperatures, leading to enhanced extinction dips up to 22%, as shown in the orange plot in Fig. 1(b). We additionally verify the molecule-resonator coupling by localizing the position of the molecule (marked by a white arrow in Fig. 1(a)), and by observing the expected peak in the transmission port of the resonator (blue line in Fig. 1(b)). Finally, we perform a comparison to a single waveguide on the same chip, which still showed maximal extinction of only 7%, consistent with the previous results. We discuss the observed degree of enhancement, compare it with the predictions of theoretical calculations, and evaluate future strategies for reaching on-chip near-unity coupling efficiency as well as many-emitter effects, such as light localization and generation of polaritonic states [4].
关键词: racetrack resonators,light-matter interaction,waveguide-emitter coupling,photonic medium,quantum optics,Purcell broadening,polaritonic states,resonant structures,Fabry-Perot cavity,quantum emitters
更新于2025-09-12 10:27:22