修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

3 条数据
?? 中文(中国)
  • Codelivery of a cytotoxin and photosensitiser <i>via</i> a liposomal nanocarrier: a novel strategy for light-triggered cytosolic release

    摘要: Endosomal entrapment is a key issue for the intracellular delivery of many nano-sized biotherapeutics to their cytosolic or nuclear targets. Photochemical internalisation (PCI) is a novel light-based solution that can be used to trigger the endosomal escape of a range of bioactive agents into the cytosol leading to improved efficacy in pre-clinical and clinical studies. PCI typically depends upon the endolysosomal colocalisation of the bioactive agent with a suitable photosensitiser that is administered separately. In this study we demonstrate that both these components may be combined for codelivery via a novel multifunctional liposomal nanocarrier, with a corresponding increase in the biological efficacy of the encapsulated agent. As proof of concept, we show here that the cytotoxicity of the 30 kDa protein toxin, saporin, in MC28 fibrosarcoma cells is significantly enhanced when delivered via a cell penetrating peptide (CPP)-modified liposome, with the CPP additionally functionalised with a photosensitiser that is targeted to endolysosomal membranes. This innovation opens the way for the efficient delivery of a range of biotherapeutics by the PCI approach, incorporating a clinically proven liposome delivery platform and using bioorthogonal ligation chemistries to append photosensitisers and peptides of choice.

    关键词: photosensitiser,codelivery,cell penetrating peptide,photochemical internalisation,saporin,liposomal nanocarrier,endosomal escape

    更新于2025-11-14 15:32:45

  • Electrochemical Fingerprint of CuS-Hexagonal Chemistry from (Bis(N-1,4-Phenyl-N-(4-Morpholinedithiocarbamato) Copper(II) Complexes) as Photon Absorber in Quantum-Dot/Dye-Sensitised Solar Cells

    摘要: The main deficit of quantum dot/dye-sensitised solar cells (QDSSCs) remains the absence of a photosensitiser that can absorb the entire visible spectrum and increase electrocatalytic activity by enhancing the conversion efficiency of QDSSCs. This placed great emphasis on the synthesis route adopted for the preparation of the sensitiser. Herein, we report the fabrication of hexagonal copper monosulfide (CuS) nanocrystals, both hexadecylamine (HDA) capped and uncapped, through thermal decomposition by thermogravimetric analysis (TGA) and a single-source precursor route. Morphological, structural, and electrochemical instruments were used to assert the properties of both materials. The CuS/HDA photosensitiser demonstrated an appropriate lifetime and electron transfer, while the electron back reaction of CuS lowered the electron lifetime in the QDSSCs. The higher electrocatalytic activity and interfacial resistance observed from current density-voltage (I–V) results agreed with electrochemical impedance spectroscopy (EIS) results for CuS/HDA. The successful fabrication of hexagonal CuS nanostructures of interesting conversion output suggested that both HDA capped and uncapped nanocrystals could be adopted in photovoltaic cells.

    关键词: photosensitiser,electrocatalystic,photovoltaic cells,single-source precursor,quantum dots

    更新于2025-09-23 15:21:01

  • Glutathione- and light-controlled generation of singlet oxygen for triggering drug release in mesoporous silica nanoparticles

    摘要: A combined stimuli-responsive photosensitiser and drug release system based on mesoporous silica nanoparticles was prepared. This nanoplatform encapsulated molecules of a zinc(II) phthalocyanine substituted with a glutathione-cleavable 2,4-dinitrobenzenesulfonate quencher and doxorubicin linked via a singlet-oxygen-cleavable 9,10-dialkoxyanthracene linker. In the presence of glutathione (in mM range) and upon irradiation (λ > 610 nm), the phthalocyanine units were activated by detaching from the quenching component to emit fluorescence and generate singlet oxygen. The latter subsequently cleaved the 9,10-dialkoxyanthracene linker to trigger the release of a doxorubicin derivative. The glutathione- and light-controlled activation and drug-release processes on this nanoplatform were demonstrated in phosphate buffered saline. The activation in fluorescence emission by intracellular thiols was also shown inside HepG2 human hepatocellular carcinoma cells. Upon irradiation, the nanosystem exhibited high cytotoxicity due to the photodynamic effect of the activated phthalocyanine units, but the cytotoxic effect of the released Dox moieties was not notable probably due to their reduced cytotoxicity as a result of the pendant substituent and the low drug loading in the nanoparticles.

    关键词: mesoporous silica nanoparticles,photosensitiser,photodynamic therapy,doxorubicin,drug release,glutathione,singlet oxygen

    更新于2025-09-23 15:19:57