修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

3 条数据
?? 中文(中国)
  • Surface Plasmon Resonance-Enhanced Visible-NIR-Driven Photocatalytic and Photothermal Catalytic Performance by Ag/Mesoporous Black TiO2 Nanotubes Heterojunctions

    摘要: Ag/mesoporous black TiO2 nanotubes heterojunctions (Ag-MBTHs) are fabricated through surface hydrogenation, wet-impregnation and photoreduction strategy. The as-prepared Ag-MBTHs possess a relatively high specific surface area of ~85 m2 g-1 and an average pore size of ~13.2 nm. The Ag-MBTHs with narrow bandgap of ~2.63 eV extend the photoresponse from UV to visible light and near-infrared (NIR) region, which exhibit excellent visible-NIR-driven photothermal catalytic and photocatalytic performance for complete conversion nitro aromatic compounds (100%) and mineralization of high-toxic phenol (100%). The enhancement can be attributed to the mesoporous hollow structures increasing the light multi-refraction, the Ti3+ in frameworks and the surface plasmon resonance (SPR) effect of plasmonic Ag nanoparticles favoring light-harvesting and spatial separation of photogenerated electron-hole pairs, which is confirmed by transient fluorescence. The fabrication of this novel SPR-enhanced visible-NIR-driven Ag-MBTHs catalyst may provide new insights for designing other high-performance heterojunctions photocatalytic and photothermal catalytic nanomaterials.

    关键词: mesoporous black TiO2 nanotube,photothermal catalysis,surface plasmon resonance,Photocatalysis,heterojunction

    更新于2025-09-23 15:21:01

  • Hybrid 0D/2D Ni2P quantum dot loaded TiO2(B) nanosheet photothermal catalysts for enhanced hydrogen evolution

    摘要: The development of low cost, stable, robust photocatalysts to convert solar energy into hydrogen energy is an important challenge. Here, we describe a simple solvothermal method to successfully fabricate a catalyst with a hybrid 0D/2D Ni2P quantum dot/TiO2(B) nanosheet architecture. HRTEM shows that Ni2P quantum dots about 5 nm in size were dispersed on ultrathin TiO2(B) nanosheets. The optimum photocatalytic H2 evolution rate with 10 wt% Ni2P/TiO2(B) (3.966 mmol g?1 h?1), which was 15 times higher than pure TiO2(B) nanosheets. Significantly, the new catalyst shows high stability and reusability in multiply cycled H2 production runs for a 30 h period. The H2 production rate can be considerably increased furthered by using synergistic photothermal H2 evolution (20.129 mmol g?1 h?1 at 90 °C).

    关键词: TiO2(B) nanosheets,Photocatalytic H2 evolution,Ni2P quantum dots,0D/2D architecture,Synergistic photothermal catalysis

    更新于2025-09-11 14:15:04

  • Metal–Organic Frameworks for Photocatalysis and Photothermal Catalysis

    摘要: To meet the ever-increasing global demand for energy, conversion of solar energy to chemical/thermal energy is very promising. Light-mediated catalysis, including photocatalysis (organic transformations, water splitting, CO2 reduction, etc.) and photothermal catalysis play key roles in solar to chemical/thermal energy conversion via the light?matter interaction. The major challenges in traditional semiconductor photocatalysts include insufficient sunlight utilization, charge carrier recombination, limited exposure of active sites, and particularly the difficulty of understanding the structure?activity relationship. Metal?organic frameworks (MOFs), featuring semiconductor-like behavior, have recently captured broad interest toward photocatalysis and photothermal catalysis because of their well-defined and tailorable porous structures, high surface areas, etc. These advantages are beneficial for rational structural modulation for improved light harvesting and charge separation as well as other effects, greatly helping to address the aforementioned challenges and especially facilitating the establishment of the structure?activity relationship. Therefore, it is increasingly important to summarize this research field and provide in-depth insight into MOF-based photocatalysis and photothermal catalysis to accelerate the future development.

    关键词: Charge separation,Photocatalysis,Light harvesting,Solar energy conversion,Photothermal catalysis,Metal?organic frameworks

    更新于2025-09-04 15:30:14