- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
An effective image denoising using PPCA and classification of CT images using artificial neural networks
摘要: The main aim of denoising is to remove the noise while recollecting as much possible important signal features. This appears to be very simple when considered under practical situations, where the type of images and noises are all variable parameters. This paper deals with removal of combination of noises from image and classification of normal and abnormal images. At first phase, median filter is used to remove the noises present in the images. To improve the denoised output, we are using PSM and PPCA with morphological operations, filter and region props. In the second phase, to analyse the denoised output, neural network-based classification is proposed. The use of artificial intelligent techniques for classification shows a great potential in this field. Hence the performance of neural network classifier is estimated in terms of training performance and classification accuracy and is compared with the existing method to show the system is effective.
关键词: GLCM,median filter,Gaussian noise,pixel surge model,CT images,neural networks,image denoising,PPCA
更新于2025-09-04 15:30:14
-
Estimation of Voxel-Based Above-Ground Biomass Using Airborne LiDAR Data in an Intact Tropical Rain Forest, Brunei
摘要: The advancement of LiDAR technology has enabled more detailed evaluations of forest structures. The so-called “Volumetric pixel (voxel)” has emerged as a new comprehensive approach. The purpose of this study was to estimate plot-level above-ground biomass (AGB) in different plot sizes of 20 m × 20 m and 30 m × 30 m, and to develop a regression model for AGB prediction. Both point cloud-based (PCB) and voxel-based (VB) metrics were used to maximize the efficiency of low-density LiDAR data within a dense forest. Multiple regression model AGB prediction performance was found to be greatest in the 30 m × 30 m plots, with R2, adjusted R2, and standard deviation values of 0.92, 0.87, and 35.13 Mg·ha?1, respectively. Five out of the eight selected independent variables were derived from VB metrics and the other three were derived from PCB metrics. Validation of accuracy yielded RMSE and NRMSE values of 27.8 Mg·ha?1 and 9.2%, respectively, which is a reasonable estimate for this structurally complex intact forest that has shown high NRMSE values in previous studies. This voxel-based approach enables a greater understanding of complex forest structure and is expected to contribute to the advancement of forest carbon quantification techniques.
关键词: LiDAR,voxel,REDD+,volumetric pixel,forest biomass,forest carbon stock,climate change
更新于2025-09-04 15:30:14