修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Plasmonically Coupled Nanoreactors for NIR-Light-Mediated Remote Stimulation of Catalysis in Living Cells

    摘要: Artificial nanoreactors that can facilitate catalysis in living systems on-demand with the aid of remotely operable and biocompatible energy-source, are needed to leverage the chemical diversity and expediency of advanced chemical synthesis in biology and medicine. Here, we designed and synthesized plasmonically-integrated nanoreactors (PINERs) with highly tunable structure and NIR-light-induced synergistic function for efficiently promoting unnatural catalytic reactions inside living cells. We devised synthetic approach towards PINERs by investigating the crucial role of metal-tannin coordination polymer nanofilm — the pH-induced decomplexation-mediated phase-transition process — for growing arrays of Au-nanospheroid-units, constructing a plasmonic corona around the proximal and reactant-accessible silica-compartmentalized catalytic nanospace. Owing to the extensive plasmonic coupling effect, PINERs show strong and tunable optical absorption in visible to NIR range, ultrabright plasmonic light scattering, controllable thermoplasmonic effect and remarkable catalysis; and, upon internalization by living cells, PINERs are highly biocompatible and demonstrate dark-field microscopy-based bioimaging features. Empowered with the synergy between plasmonic and catalytic effects and reactant/product transport, facilitated by the NIR-irradiation, PINERs can perform intracellular catalytic reactions with dramatically accelerated rates and efficiently synthesize chemically activated fluorescence-probes inside living cells.

    关键词: plasmonic nanoprobes,catalytic nanoreactors,coordination polymer,biorthogonal chemistry,bioimaging

    更新于2025-09-23 15:21:01

  • Towards rational design and optimization of near-field enhancement and spectral tunability of hybrid core-shell plasmonic nanoprobes

    摘要: In biology, sensing is a major driver of discovery. A principal challenge is to create a palette of probes that offer near single-molecule sensitivity and simultaneously enable multiplexed sensing and imaging in the “tissue-transparent” near-infrared region. Surface-enhanced Raman scattering and metal-enhanced fluorescence have shown substantial promise in addressing this need. Here, we theorize a rational design and optimization strategy to generate nanostructured probes that combine distinct plasmonic materials sandwiching a dielectric layer in a multilayer core shell configuration. The lower energy resonance peak in this multi-resonant construct is found to be highly tunable from visible to the near-IR region. Such a configuration also allows substantially higher near-field enhancement, compared to a classical core-shell nanoparticle that possesses a single metallic shell, by exploiting the differential coupling between the two core-shell interfaces. Combining such structures in a dimer configuration, which remains largely unexplored at this time, offers significant opportunities not only for near-field enhancement but also for multiplexed sensing via the (otherwise unavailable) higher order resonance modes. Together, these theoretical calculations open the door for employing such hybrid multi-layered structures, which combine facile spectral tunability with ultrahigh sensitivity, for biomolecular sensing.

    关键词: plasmonic nanoprobes,near-field enhancement,hybrid core-shell,biomolecular sensing,spectral tunability,multiplexed sensing

    更新于2025-09-11 14:15:04