修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

4 条数据
?? 中文(中国)
  • [IEEE 2019 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA) - Manizales, Colombia (2019.5.30-2019.5.31)] 2019 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA) - Determination and Performance Analysis of the Norton Equivalent Models for Fluorescents and LED Recessed Lightings

    摘要: For long-wavelength space-based radars, such as the P-band radar on the recently selected European Space Agency BIOMASS mission, system distortions (crosstalk and channel imbalance), Faraday rotation, and system noise all combine to degrade the measurements. A first-order analysis of these effects on the measurements of the polarimetric scattering matrix is used to derive differentiable expressions for the errors in the polarimetric backscattering coefficients in the presence of Faraday rotation. Both the amplitudes and phases of the distortion terms are shown to be important in determining the errors and their maximum values. Exact simulations confirm the accuracy and predictions of the first-order analysis. Under an assumed power-law relation between σhv and the biomass, the system distortions and noise are converted into biomass estimation errors, and it is shown that the magnitude of the deviation of the channel imbalance from unity must be 4–5 dB less than the crosstalk, or it will dominate the error in the biomass. For uncalibrated data and midrange values of biomass, the crosstalk must be less than ?24 dB if the maximum possible error in the biomass is to be within 20% of its true value. A less stringent condition applies if the amplitudes and phases of the distortion terms are considered random since errors near the maximum possible are very unlikely. For lower values of the biomass, the noise becomes increasingly important because the σhv signal-to-noise ratio is smaller.

    关键词: Biomass,Faraday rotation,polarimetric measurements,system distortion,calibration,long-wavelength radar

    更新于2025-09-23 15:21:01

  • [IEEE 2019 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific) - Seogwipo-si, Korea (South) (2019.5.8-2019.5.10)] 2019 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific) - Optimal scheduling of critical peak pricing considering photovoltaic generation and electric vehicle load

    摘要: For long-wavelength space-based radars, such as the P-band radar on the recently selected European Space Agency BIOMASS mission, system distortions (crosstalk and channel imbalance), Faraday rotation, and system noise all combine to degrade the measurements. A first-order analysis of these effects on the measurements of the polarimetric scattering matrix is used to derive differentiable expressions for the errors in the polarimetric backscattering coefficients in the presence of Faraday rotation. Both the amplitudes and phases of the distortion terms are shown to be important in determining the errors and their maximum values. Exact simulations confirm the accuracy and predictions of the first-order analysis. Under an assumed power-law relation between σhv and the biomass, the system distortions and noise are converted into biomass estimation errors, and it is shown that the magnitude of the deviation of the channel imbalance from unity must be 4–5 dB less than the crosstalk, or it will dominate the error in the biomass. For uncalibrated data and midrange values of biomass, the crosstalk must be less than ?24 dB if the maximum possible error in the biomass is to be within 20% of its true value. A less stringent condition applies if the amplitudes and phases of the distortion terms are considered random since errors near the maximum possible are very unlikely. For lower values of the biomass, the noise becomes increasingly important because the σhv signal-to-noise ratio is smaller.

    关键词: Biomass,Faraday rotation,polarimetric measurements,system distortion,calibration,long-wavelength radar

    更新于2025-09-23 15:19:57

  • Modal Analysis of 2-D Material-based Plasmonic Waveguides by Mixed Spectral Element Method with Equivalent Boundary Condition

    摘要: For long-wavelength space-based radars, such as the P-band radar on the recently selected European Space Agency BIOMASS mission, system distortions (crosstalk and channel imbalance), Faraday rotation, and system noise all combine to degrade the measurements. A first-order analysis of these effects on the measurements of the polarimetric scattering matrix is used to derive differentiable expressions for the errors in the polarimetric backscattering coefficients in the presence of Faraday rotation. Both the amplitudes and phases of the distortion terms are shown to be important in determining the errors and their maximum values. Exact simulations confirm the accuracy and predictions of the first-order analysis. Under an assumed power-law relation between σhv and the biomass, the system distortions and noise are converted into biomass estimation errors, and it is shown that the magnitude of the deviation of the channel imbalance from unity must be 4–5 dB less than the crosstalk, or it will dominate the error in the biomass. For uncalibrated data and midrange values of biomass, the crosstalk must be less than ?24 dB if the maximum possible error in the biomass is to be within 20% of its true value. A less stringent condition applies if the amplitudes and phases of the distortion terms are considered random since errors near the maximum possible are very unlikely. For lower values of the biomass, the noise becomes increasingly important because the σhv signal-to-noise ratio is smaller.

    关键词: Biomass,Faraday rotation,polarimetric measurements,system distortion,calibration,long-wavelength radar

    更新于2025-09-23 15:19:57

  • [IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Epitaxial GaP grown on Silicon by MEE and MBE Techniques as a Pathway for Dilute Nitride-Si Tandem Solar Cells

    摘要: For long-wavelength space-based radars, such as the P-band radar on the recently selected European Space Agency BIOMASS mission, system distortions (crosstalk and channel imbalance), Faraday rotation, and system noise all combine to degrade the measurements. A first-order analysis of these effects on the measurements of the polarimetric scattering matrix is used to derive differentiable expressions for the errors in the polarimetric backscattering coefficients in the presence of Faraday rotation. Both the amplitudes and phases of the distortion terms are shown to be important in determining the errors and their maximum values. Exact simulations confirm the accuracy and predictions of the first-order analysis. Under an assumed power-law relation between σhv and the biomass, the system distortions and noise are converted into biomass estimation errors, and it is shown that the magnitude of the deviation of the channel imbalance from unity must be 4–5 dB less than the crosstalk, or it will dominate the error in the biomass. For uncalibrated data and midrange values of biomass, the crosstalk must be less than ?24 dB if the maximum possible error in the biomass is to be within 20% of its true value. A less stringent condition applies if the amplitudes and phases of the distortion terms are considered random since errors near the maximum possible are very unlikely. For lower values of the biomass, the noise becomes increasingly important because the σhv signal-to-noise ratio is smaller.

    关键词: Biomass,Faraday rotation,polarimetric measurements,system distortion,calibration,long-wavelength radar

    更新于2025-09-19 17:13:59