修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

3 条数据
?? 中文(中国)
  • Suppression of Electrochemically Driven Phase Transition in Nanostructured MoS2 Pseudocapacitors Probed Using Operando X-ray Diffraction

    摘要: Pseudocapacitors with non-diffusion-limited charge storage mechanisms allow for fast kinetics that exceed conventional battery materials. It has been demonstrated that nanostructuring conventional battery materials can induce pseudocapacitive behavior. In our previous study, we found that assemblies of metallic 1T MoS2 nanocrystals show faster charge storage compared to the bulk material. Quantitative electrochemistry demonstrated that the current response is capacitive. In this work, we perform a series of operando X-ray diffraction studies upon electrochemical cycling to show that the high capacitive response of metallic 1T MoS2 nanocrystals is due to suppression of the standard first-order phase transition. In bulk MoS2, a phase transition between 1T and triclinic phases (LixMoS2) is observed during lithiation and delithiation in both the galvanostatic traces (as distinctive plateaus) and the X-ray diffraction patterns with the appearance of the additional peaks. MoS2 nanocrystal assemblies, on the other hand, show none of these features. We hypothesize that the reduced MoS2 crystallite size suppresses the first-order phase transition and gives rise to solid solution-like behavior, potentially due to the unfavorable formation of nucleation sites in confined space. Overall, we find that nanostructuring MoS2 suppresses the 1T-Triclinc phase transition and shortens Li-ion diffusion path lengths, allowing MoS2 nanocrystal assemblies to behave as nearly ideal pseudocapacitors.

    关键词: intercalation pseudocapacitor,pseudocapacitance,MoS2,phase transition suppression,porous electrodes,nanocrystal assemblies,fast charging

    更新于2025-09-23 15:23:52

  • Performance Improvement of Gate-Tunable Organic Light-Emitting Diodes with Electron-Transport and Hole-Blocking Layers

    摘要: The current density and luminance of gate-tunable organic light-emitting diodes (OLEDs) can be modulated by application of an external gate potential. However, existing gate-tunable OLEDs require further optimization to make them suitable for practical use. In this work, the rapid electron conduction of 4,4’-bis(N-carbazolyl)-1,1’biphenyl (CBP) molecules under low operating potential is demonstrated in polymer electrolyte-coated super yellow (SY) polymer light-emitting diodes (PLEDs). This behavior is attributed to the facile electrochemical n-doping of CBP by the polymer electrolyte infiltrated into the SY PLED through the porous aluminum cathode. The field-modulated conductivity of CBP upon applying an external gate potential to electrolyte-gated (EG) PLEDs is demonstrated. These phenomena lead to the improved performance of EG SY PLEDs with a CBP electron-transport layer and 1,3,5-tris[(3-pyridyl)-phen-3-yl]benzene) (TmpypB) hole-blocking layer between the porous aluminum cathode and SY emissive layer, including low turn-on voltage (1.5 V), low current density leakage (0.01 mA/cm2), low off luminance (<0.01 cd/m2), saturated on-current density (2 mA/cm2) and on-luminance (100 cd/m2), and largely suppressed hysteresis. These results pave the path for practical application of EG OLEDs in displays, especially near-to-eye displays.

    关键词: facile electrochemical doping,saturated on-current density and on-luminance,low off-current density leakage and off-luminance,suppressed hysteresis,near-to-eye displays,gate-tunable organic light-emitting diodes,grayscale displaying,porous electrodes

    更新于2025-09-23 15:21:01

  • Preparation of Highly Porous Carbonous Electrodes by Selective Laser Sintering

    摘要: Selective laser sintering (SLS) 3D printing was utilized to fabricate highly porous carbonous electrodes. The electrodes were prepared by using a mixture of fine graphite powder and either polyamide-12, polystyrene, or polyurethane polymer powder as SLS printing material. During the printing process the graphite powder was dispersed uniformly on the supporting polymer matrix. Graphite’s concentration in the mixture was varied between 5 and 40 wt % to find the correlation between the carbon content and conductivity. The graphite concentration, polymer matrix, and printing conditions all had an impact on the final conductivity. Due to the SLS printing technique, all the 3D printed electrodes were highly porous. By using polyurethane as the supporting matrix it was possible to produce flexible electrodes in which the conductivity is sensitive to pressure and mechanical stress. Physical properties such as graphite distribution, attachment, and the overall porosity of the printed electrodes were studied using scanning electron microscopy (SEM), helium ion microscopy (HIM), and X-ray tomography. The results show that the combination of chemical design of the printing material and the utilization of SLS 3D printing enables fabrication of highly customizable electrodes with desired chemical, physical, mechanical, and flow-through properties.

    关键词: conductivity,graphite,3D printing,selective laser sintering,porous electrodes

    更新于2025-09-19 17:13:59