修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Optical Wireless Communication Based Indoor Positioning Algorithms: Performance Optimisation and Mathematical Modelling

    摘要: In this paper, the performance of the optimal beam radius indoor positioning (OBRIP) and two-receiver indoor positioning (TRIP) algorithms are analysed by varying system parameters in the presence of an indoor optical wireless channel modelled in line of sight configuration. From all the conducted simulations, the minimum average error value obtained for TRIP is 0.61 m against 0.81 m obtained for OBRIP for room dimensions of 10 m × 10 m × 3 m. In addition, for each simulated condition, TRIP, which uses two receivers, outperforms OBRIP and reduces position estimation error up to 30%. To get a better understanding of error in position estimation for different combinations of beam radius and separation between light emitting diodes, the 90th percentile error is determined using a cumulative distribution frequency (CDF) plot, which gives an error value of 0.94 m for TRIP as compared to 1.20 m obtained for OBRIP. Both algorithms also prove to be robust towards change in receiver tilting angle, thus providing flexibility in the selection of the parameters to adapt to any indoor environment. In addition, in this paper, a mathematical model based on the concept of raw moments is used to confirm the findings of the simulation results for the proposed algorithms. Using this mathematical model, closed-form expressions are derived for standard deviation of uniformly distributed points in an optical wireless communication based indoor positioning system with circular and rectangular beam shapes.

    关键词: position estimation,channel modelling,raw moments,optical wireless communication,indoor positioning system,cumulative distribution frequency,standard deviation

    更新于2025-09-23 15:22:29

  • Optical Sensor-Embedded Pneumatic Artificial Muscle for Position and Force Estimation

    摘要: This study presents the design of a pneumatic arti?cial muscle with integrated soft optical sensing for estimation of muscle contraction length and contraction force. Each optical sensor uses an light emitting diode (LED)-photodiode pair to measure the light re?ected by a silicone diaphragm embedded in the muscle. One diaphragm is designed to respond primarily to changes in muscle pressure, whereas the other is designed to respond to changes in muscle length. Muscle sensors were calibrated by measuring muscle contraction force versus length for a range of ?xed muscle pressures and then mapping optical sensor data to the corresponding length and force data. To evaluate sensorized muscle performance in a robotic system, two antagonistic muscle pairs were used to actuate a planar two-degree-of-freedom arm. In various static and dynamic tests, arm positions and forces were estimated from optical sensor measurements. Optical sensor estimates of static and dynamic end-effector position estimation yielded average errors of 1.3 and 1.1 cm, respectively. Optical sensor estimates of static and dynamic end-effector force yielded average total force errors of 0.16 and 0.12 N for maximum end-effector forces of 2.0 and 2.4 N, respectively.

    关键词: force estimation,optical sensors,pneumatic arti?cial muscle,position estimation,robotic arm

    更新于2025-09-23 15:19:57