- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
A High Sensitivity Optical Fiber Interferometer Sensor for Acoustic Emission Detection of Partial Discharge in Power Transformer
摘要: We propose a Michelson ultrasonic sensing system for detecting the acoustic emission generated by the partial discharge in power transformer. In order to guide the sensor head design in the sensing system for high sensitivity, a theoretical model is established to investigate the effects of the sensor head dimensions on the response sensitivity. After that, an optimized sensor head is designed. In the frequency range from 80 kHz to 200 kHz, whether the PZT sensor is installed in the oil or on the tank, the average response sensitivity of the proposed sensing system is higher than that of the conventional PZT system. When the distance between the sensor head and ultrasonic source is 300 mm in oil, the average detection limit of the Michelson ultrasonic sensing system is about 0.26 Pa, which is about 18.6% of that of the PZT system. Moreover, experiment results show that the detectable partial discharge initial voltage for the proposed optical system is 21.5% lower than that for the PZT system. The enhanced sensitivity makes the Michelson ultrasonic sensing system a potential method to detect the small defects in power transformer.
关键词: Michelson interferometer,fiber coil effects,partial discharge,power transformer,optical fiber sensor
更新于2025-09-12 10:27:22
-
[IEEE 2018 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE) - Sg. Long, Cheras, Kajang, Malaysia (2018.5.29-2018.6.1)] 2018 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE) - H2D4-Type Single Phase Transformer-Less Inverter with Reactive Power Control for Grid-tied PV System
摘要: Transformer-less inverter is popular for grid-tied photovoltaic (PV) system due to low cost, smaller size and higher efficiency. However, one of the technical challenges, which need to be handled carefully, is the issue of leakage current. Moreover, an inverter must be capable of controlling the reactive power to a certain extend to maintain the power factor (PF) close to unity. Therefore, many inverter topologies have been proposed. In this paper, a new four diodes and two IGBT switch based H2D4-type highly efficient transformer-less inverter is proposed that can handle the issue of leakage current maintaining low total harmonic distortion (THD) and higher PF where the common mode (CM) voltage is maintained constant. As a result, the leakage current deceases and the conduction loss as well as size of the system is decreased due to minimum number of IGBT switches. Furthermore, two control systems are proposed to control the reactive power with desire PF. The comparison among proposed H2D4 topology and conventional neutral point clamped (NPC) and H6 topology have been analyzed in this paper. To validate the accuracy of the theoretical analysis, the compared topologies are simulated in MATLAB/Simulink software. It is found that the PLL and PI closed loop control based H2D4 inverter topology controls the reactive power maintaining a low current THD with higher efficiency and high PF as compared to the system with only PI control based topology.
关键词: total harmonic distortion,leakage current,H2D4 topology,reactive power,transformer-less inverter,power factor,grid connected photovoltaic
更新于2025-09-04 15:30:14
-
On-Line Analysis of Oil-Dissolved Gas in Power Transformers Using Fourier Transform Infrared Spectrometry
摘要: To address the problem of on-line dissolved gas analysis (DGA) of a power transformer, a Fourier transform infrared (FT-IR) spectrometer was used to develop an analysis instrument. Carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), ethane (C2H6), ethylene (C2H4) and acetylene (C2H2) were the analytes for the FT-IR spectrometer while propane (C3H8), propylene (C3H6), propyne (C3H4), n-butane (n-C4H10) and iso-butane (iso-C4H10) were the interferents, which might exist in the dissolved gas but are not currently used as analytes for detecting an internal fault. The instrument parameters and analysis approach are first introduced. Specifically, an absorption spectra reading approach by switching two cone-type gas cells into separate light-paths was presented for reducing the effects of gas in the gaps between gas cells and spectrometers, scanning the background spectrum without clearing the sample cell, and increasing the dynamics. Then, the instrument was tested with a standard gas mixture that was extracted from insulation oil in a power transformer. The testing results show that the detection limit of every analyte component is lower than 0.1 μL/L, and the detection limits of all analytes meet the detection requirements of oil-dissolved gas analysis, which means that the FT-IR spectrometer may be an ideal instrument due to its benefits, such as being maintenance-free and having a high stability.
关键词: power transformer,oil-dissolved gas,gas chromatograph,spectral analysis,Fourier transform infrared spectrometer
更新于2025-09-04 15:30:14