- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
[IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Nonlinear Quantum Devices
摘要: Industrial networks demand centrally controlled quality of service (QoS), often in the form of hard real-time guarantees. Software-defined networking (SDN) provides a convenient paradigm for central QoS control. However, existing SDN-based solutions cannot guarantee hard real-time QoS as they rely on a control loop over the forwarding (data) and control planes. We propose a novel SDN-based QoS control framework that maintains an accurate network model through network calculus to avoid a control loop over forwarding and control planes, allocates resources to and routes flows over a network of “queue links,” whereby each physical network link houses multiple queue links (with different QoS levels), and manages QoS through a function split between delay-constrained least-cost routing on the network of queue links and the resource allocation to the queue links. This function split greatly reduces the computational complexity while achieving hard real-time QoS with high bandwidth utilization. Our evaluation results indicate that our function split approach allows for online runtime admission control and can achieve bandwidth utilization above 80% while meeting deterministic real-time QoS requirements.
关键词: software-defined networking (SDN),industrial network,network calculus,Bandwidth utilization,real-time quality of service (QoS)
更新于2025-09-19 17:13:59
-
[IEEE 2019 Compound Semiconductor Week (CSW) - Nara, Japan (2019.5.19-2019.5.23)] 2019 Compound Semiconductor Week (CSW) - High detectivity AlInSb mid-infrared photodiode sensors with dislocation filter layers for gas sensing application
摘要: An Enhanced-Internet that provides ultra-low-latency guaranteed-rate communications for Cloud Services is proposed. The network supports two traffic classes, the Smooth and Best-Effort classes. Smooth traffic flows receive low-jitter GR service over virtual-circuit-switched (VCS) connections with negligible buffering and queueing delays, up to 100% link utilizations, deterministic end-to-end quality-of-service (QoS) guarantees, and improved energy efficiency. End-to-end delays are effectively reduced to the fiber “time of flight.” A new router scheduling problem called the Bounded Normalized-Jitter integer-programming problem is formulated. A fast polynomial-time approximate solution is presented, allowing TDM-based router schedules to be computed in microseconds. We establish that all admissible traffic demands in any packet-switched network can be simultaneously satisfied with GR-VCS connections, with minimal buffering. Each router can use two periodic TDM-based schedules to support GR-VCS connections, which are updated automatically when the router's traffic rate matrix changes. The design of a Silicon-Photonics all-optical packet switch with minimal buffering is presented. The Enhanced-Internet can: 1) reduce router buffer requirements by factors of ; 2) increase the Internet's aggregate capacity; 3) lower the Internet's capital and operating costs; and 4) lower greenhouse gas emissions through improved energy efficiency.
关键词: energy efficiency,DiffServ,cloud,low latency,Buffer sizes,routing,data centers,Future Internet,cloud computing,quality of service (QoS),scheduling
更新于2025-09-19 17:13:59
-
[IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Analysis of Surface Passivation and Laser Firing via Light-Beam Induced Current Measurements
摘要: Cloud computing is becoming an increasingly admired paradigm that delivers high-performance computing resources over the Internet to solve the large-scale scientific problems, but still it has various challenges that need to be addressed to execute scientific workflows. The existing research mainly focused on minimizing finishing time (makespan) or minimization of cost while meeting the quality of service requirements. However, most of them do not consider essential characteristic of cloud and major issues, such as virtual machines (VMs) performance variation and acquisition delay. In this paper, we propose a meta-heuristic cost effective genetic algorithm that minimizes the execution cost of the workflow while meeting the deadline in cloud computing environment. We develop novel schemes for encoding, population initialization, crossover, and mutations operators of genetic algorithm. Our proposal considers all the essential characteristics of the cloud as well as VM performance variation and acquisition delay. Performance evaluation on some well-known scientific workflows, such as Montage, LIGO, CyberShake, and Epigenomics of different size exhibits that our proposed algorithm performs better than the current state-of-the-art algorithms.
关键词: scientific workflows,Cloud computing,resource provisioning,quality of service (QoS),scheduling
更新于2025-09-19 17:13:59
-
[IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Maximisation of Quantum Correlations under Local Filtering Operations
摘要: Industrial networks demand centrally controlled quality of service (QoS), often in the form of hard real-time guarantees. Software-defined networking (SDN) provides a convenient paradigm for central QoS control. However, existing SDN-based solutions cannot guarantee hard real-time QoS as they rely on a control loop over the forwarding (data) and control planes. We propose a novel SDN-based QoS control framework that maintains an accurate network model through network calculus to avoid a control loop over forwarding and control planes, allocates resources to and routes flows over a network of “queue links,” whereby each physical network link houses multiple queue links (with different QoS levels), and manages QoS through a function split between delay-constrained least-cost routing on the network of queue links and the resource allocation to the queue links. This function split greatly reduces the computational complexity while achieving hard real-time QoS with high bandwidth utilization. Our evaluation results indicate that our function split approach allows for online runtime admission control and can achieve bandwidth utilization above 80% while meeting deterministic real-time QoS requirements.
关键词: software-defined networking (SDN),industrial network,network calculus,Bandwidth utilization,real-time quality of service (QoS)
更新于2025-09-19 17:13:59
-
[IEEE 2019 19th International Conference on Advanced Robotics (ICAR) - Belo Horizonte, Brazil (2019.12.2-2019.12.6)] 2019 19th International Conference on Advanced Robotics (ICAR) - The CALM System: New Generation Computer-Assisted Laser Microsurgery
摘要: An Enhanced-Internet that provides ultra-low-latency guaranteed-rate communications for Cloud Services is proposed. The network supports two traffic classes, the Smooth and Best-Effort classes. Smooth traffic flows receive low-jitter GR service over virtual-circuit-switched (VCS) connections with negligible buffering and queueing delays, up to 100% link utilizations, deterministic end-to-end quality-of-service (QoS) guarantees, and improved energy efficiency. End-to-end delays are effectively reduced to the fiber 'time of flight.' A new router scheduling problem called the Bounded Normalized-Jitter integer-programming problem is formulated. A fast polynomial-time approximate solution is presented, allowing TDM-based router schedules to be computed in microseconds. We establish that all admissible traffic demands in any packet-switched network can be simultaneously satisfied with GR-VCS connections, with minimal buffering. Each router can use two periodic TDM-based schedules to support GR-VCS connections, which are updated automatically when the router's traffic rate matrix changes. The design of a Silicon-Photonics all-optical packet switch with minimal buffering is presented. The Enhanced-Internet can: 1) reduce router buffer requirements by factors of; 2) increase the Internet's aggregate capacity; 3) lower the Internet's capital and operating costs; and 4) lower greenhouse gas emissions through improved energy efficiency.
关键词: energy efficiency,DiffServ,cloud,low latency,Buffer sizes,routing,data centers,Future Internet,cloud computing,quality of service (QoS),scheduling
更新于2025-09-16 10:30:52