修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

79 条数据
?? 中文(中国)
  • Masking quantum information in multipartite scenario

    摘要: Recently, Modi et al. [Phys. Rev. Lett. 120, 230501 (2018)] found that masking quantum information is impossible in a bipartite scenario. This adds another item to the no-go theorems. In this paper, we present some schemes different from error correction codes, which show that quantum states can be masked when more participants are allowed in the masking process. Moreover, using a pair of mutually orthogonal Latin squares of dimension d, we show that all the d level quantum states can be masked into tripartite quantum systems whose local dimensions are d or d + 1. This highlights some differences between the no-masking theorem and the classical no-cloning theorem or no-deleting theorem.

    关键词: Latin squares,quantum information,no-masking theorem,masking,multipartite scenario

    更新于2025-09-09 09:28:46

  • Cavity optomagnonics with magnetic textures: Coupling a magnetic vortex to light

    摘要: Optomagnonic systems, where light couples coherently to collective excitations in magnetically ordered solids, are currently of high interest due to their potential for quantum information processing platforms at the nanoscale. Efforts so far, both at the experimental and theoretical level, have focused on systems with a homogeneous magnetic background. A unique feature in optomagnonics is, however, the possibility of coupling light to spin excitations on top of magnetic textures. We propose a cavity-optomagnonic system with a nonhomogeneous magnetic ground state, namely, a vortex in a magnetic microdisk. In particular, we study the coupling between optical whispering gallery modes to magnon modes localized at the vortex. We show that the optomagnonic coupling has a rich spatial structure and that it can be tuned by an externally applied magnetic field. Our results predict cooperativities at maximum photon density of the order of C ≈ 10?2 by proper engineering of these structures.

    关键词: Magnon modes,Quantum information processing,Whispering gallery modes,Magnetic textures,Optomagnonics

    更新于2025-09-09 09:28:46

  • Generating higher-order quantum dissipation from lower-order parametric processes

    摘要: The stabilisation of quantum manifolds is at the heart of error-protected quantum information storage and manipulation. Nonlinear driven-dissipative processes achieve such stabilisation in a hardware efficient manner. Josephson circuits with parametric pump drives implement these nonlinear interactions. In this article, we propose a scheme to engineer a four-photon drive and dissipation on a harmonic oscillator by cascading experimentally demonstrated two-photon processes. This would stabilise a four-dimensional degenerate manifold in a superconducting resonator. We analyse the performance of the scheme using numerical simulations of a realisable system with experimentally achievable parameters.

    关键词: dissipation engineering,quantum information,quantum error correction,superconducting quantum computation

    更新于2025-09-04 15:30:14

  • Holevo Capacity of Discrete Weyl Channels

    摘要: Holevo capacity is the maximum rate at which a quantum channel can reliably transmit classical information without entanglement. However, calculating the Holevo capacity of arbitrary quantum channels is a nontrivial and computationally expensive task since it requires the numerical optimization over all possible input quantum states. In this paper, we consider discrete Weyl channels (DWCs) and exploit their symmetry properties to model DWC as a classical symmetric channel. We characterize lower and upper bounds on the Holevo capacity of DWCs using simple computational formulae. Then, we provide a sufficient and necessary condition where the upper and lower bounds coincide. The framework in this paper enables us to characterize the exact Holevo capacity for most of the known special cases of DWCs.

    关键词: classical symmetric channel,quantum information theory,discrete Weyl channels,Holevo capacity,quantum channel

    更新于2025-09-04 15:30:14

  • Integrated photonic platform for quantum information with continuous variables

    摘要: Integrated quantum photonics provides a scalable platform for the generation, manipulation, and detection of optical quantum states by confining light inside miniaturized waveguide circuits. Here, we show the generation, manipulation, and interferometric stage of homodyne detection of nonclassical light on a single device, a key step toward a fully integrated approach to quantum information with continuous variables. We use a dynamically reconfigurable lithium niobate waveguide network to generate and characterize squeezed vacuum and two-mode entangled states, key resources for several quantum communication and computing protocols. We measure a squeezing level of ?1.38 ± 0.04 dB and demonstrate entanglement by verifying an inseparability criterion I = 0.77 ± 0.02 < 1. Our platform can implement all the processes required for optical quantum technology, and its high nonlinearity and fast reconfigurability make it ideal for the realization of quantum computation with time encoded continuous-variable cluster states.

    关键词: continuous variables,squeezed vacuum,entangled states,Integrated quantum photonics,quantum information

    更新于2025-09-04 15:30:14

  • Multiphoton Tomography with Linear Optics and Photon Counting

    摘要: Determining an unknown quantum state from an ensemble of identical systems is a fundamental, yet experimentally demanding, task in quantum science. Here we study the number of measurement bases needed to fully characterize an arbitrary multimode state containing a definite number of photons, or an arbitrary mixture of such states. We show this task can be achieved using only linear optics and photon counting, which yield a practical though nonuniversal set of projective measurements. We derive the minimum number of measurement settings required and numerically show that this lower bound is saturated with random linear optics configurations, such as when the corresponding unitary transformation is Haar random. Furthermore, we show that for N photons, any unitary 2N design can be used to derive an analytical, though nonoptimal, state reconstruction protocol.

    关键词: photon counting,linear optics,quantum state tomography,multiphoton states,quantum information

    更新于2025-09-04 15:30:14

  • Operational Resource Theory of Continuous-Variable Nonclassicality

    摘要: Genuinely quantum states of a harmonic oscillator may be distinguished from their classical counterparts by the Glauber-Sudarshan P representation—a state lacking a positive P function is said to be nonclassical. In this paper, we propose a general operational framework for studying nonclassicality as a resource in networks of passive linear elements and measurements with feed forward. Within this setting, we define new measures of nonclassicality based on the quantum fluctuations of quadratures, as well as the quantum Fisher information of quadrature displacements. These measures lead to fundamental constraints on the manipulation of nonclassicality, especially its concentration into subsystems, that apply to generic multimode non-Gaussian states. Special cases of our framework include no-go results in the concentration of squeezing and a complete hierarchy of nonclassicality for single-mode Gaussian states.

    关键词: Optics,Quantum Physics,Quantum Information

    更新于2025-09-04 15:30:14

  • Spin–orbit coupling in silicon for electrons bound to donors

    摘要: Spin–orbit coupling (SOC) is fundamental to a wide range of phenomena in condensed matter, spanning from a renormalisation of the free-electron g-factor, to the formation of topological insulators, and Majorana Fermions. SOC has also profound implications in spin-based quantum information, where it is known to limit spin lifetimes (T1) in the inversion asymmetric semiconductors such as GaAs. However, for electrons in silicon—and in particular those bound to phosphorus donor qubits—SOC is usually regarded weak, allowing for spin lifetimes of minutes in the bulk. Surprisingly, however, in a nanoelectronic device donor spin lifetimes have only reached values of seconds. Here, we reconcile this difference by demonstrating that electric ?eld induced SOC can dominate spin relaxation of donor-bound electrons. Eliminating this lifetime-limiting effect by careful alignment of an external vector magnetic ?eld in an atomically engineered device, allows us to reach the bulk-limit of spin-relaxation times. Given the unexpected strength of SOC in the technologically relevant silicon platform, we anticipate that our results will stimulate future theoretical and experimental investigation of phenomena that rely on strong magnetoelectric coupling of atomically con?ned spins.

    关键词: silicon,spin relaxation,Spin–orbit coupling,donor-bound electrons,quantum information

    更新于2025-09-04 15:30:14

  • Tunnel spectroscopy of localised electronic states in hexagonal boron nitride

    摘要: Hexagonal boron nitride is a large band gap layered crystal, frequently incorporated in van der Waals heterostructures as an insulating or tunnel barrier. Localised states with energies within its band gap can emit visible light, relevant to applications in nanophotonics and quantum information processing. However, they also give rise to conducting channels, which can induce electrical breakdown when a large voltage is applied. Here we use gated tunnel transistors to study resonant electron tunnelling through the localised states in few atomic-layer boron nitride barriers sandwiched between two monolayer graphene electrodes. The measurements are used to determine the energy, linewidth, tunnelling transmission probability, and depth within the barrier of more than 50 distinct localised states. A three-step process of electron percolation through two spatially separated localised states is also investigated.

    关键词: quantum information processing,hexagonal boron nitride,tunnel spectroscopy,localised electronic states,graphene

    更新于2025-09-04 15:30:14