修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

3 条数据
?? 中文(中国)
  • [IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - SUPER PV project a?? Developing innovative PV systems for cost reduction and enhanced performance

    摘要: Performance of cellular communication systems is typically enhanced by leveraging the three dimensions of system transmission bandwidth, area frequency reuse, i.e. system access point (AP) density, and spectral ef?ciency of employed radio air interface, referred to as the radio access technology (RAT). In particular, re?ned RATs are continuously introduced to compensate for limited spectrum availability and restrictions on system AP densi?cation in cellular communication systems. While the performance of cellular communication systems is maximized by employing a single RAT providing maximal spectral ef?ciency, varying capabilities of user equipment compels the co-deployment of multiple RATs in cellular communication systems and entails fragmenting system radiofrequency resources between co-deployed RATs. Nevertheless, the inef?cient structuring of multi-RAT systems as independently operated collocated single-RAT subsystems results in unbalanced system loading, suboptimal spectrum utilization, and the omission of multiuser diversity as a performance enhancement dimension in multi-RAT systems. The omitted dimension of multiuser diversity is exploited in this paper, through multiple means and techniques, to further enhance the performance of multi-RAT data cellular communication systems. Unifying the architectural structure of multi-RAT systems is proposed to eliminate the redundant duplication of radio access network functions and elements, reduce system deployment costs and operational complexity, improve system scalability, and enable the joint execution of non-radio transmission functions for all co-deployed RATs. By fully exploiting system multiuser diversity, the joint allocation of system radiofrequency resources under autonomous spectrum assignment is shown to substantially enhance the performance of all employed RATs, in addition to the overall performance of multi-RAT systems, without extending any of the three typical performance enhancement dimensions of cellular communication systems.

    关键词: user access,radio resource allocation,multi-radio access technology systems,user equipment,spectrum management,radio access networks,Cellular communication systems,radio access technologies

    更新于2025-09-19 17:13:59

  • [IEEE 2019 Photonics North (PN) - Quebec City, QC, Canada (2019.5.21-2019.5.23)] 2019 Photonics North (PN) - Laser ablation generation of gold nanoparticles for highly efficient optical humidity sensor

    摘要: Performance of cellular communication systems is typically enhanced by leveraging the three dimensions of system transmission bandwidth, area frequency reuse, i.e. system access point (AP) density, and spectral ef?ciency of employed radio air interface, referred to as the radio access technology (RAT). In particular, re?ned RATs are continuously introduced to compensate for limited spectrum availability and restrictions on system AP densi?cation in cellular communication systems. While the performance of cellular communication systems is maximized by employing a single RAT providing maximal spectral ef?ciency, varying capabilities of user equipment compels the co-deployment of multiple RATs in cellular communication systems and entails fragmenting system radiofrequency resources between co-deployed RATs. Nevertheless, the inef?cient structuring of multi-RAT systems as independently operated collocated single-RAT subsystems results in unbalanced system loading, suboptimal spectrum utilization, and the omission of multiuser diversity as a performance enhancement dimension in multi-RAT systems. The omitted dimension of multiuser diversity is exploited in this paper, through multiple means and techniques, to further enhance the performance of multi-RAT data cellular communication systems. Unifying the architectural structure of multi-RAT systems is proposed to eliminate the redundant duplication of radio access network functions and elements, reduce system deployment costs and operational complexity, improve system scalability, and enable the joint execution of non-radio transmission functions for all co-deployed RATs. By fully exploiting system multiuser diversity, the joint allocation of system radiofrequency resources under autonomous spectrum assignment is shown to substantially enhance the performance of all employed RATs, in addition to the overall performance of multi-RAT systems, without extending any of the three typical performance enhancement dimensions of cellular communication systems.

    关键词: spectrum management,radio access technologies,radio access networks,user equipment,Cellular communication systems,multi-radio access technology systems,user access,radio resource allocation

    更新于2025-09-16 10:30:52

  • [IEEE 2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) - Ottawa, ON, Canada (2019.7.8-2019.7.12)] 2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) - Numerical Designing of Optical Waveguide by Curvilinear Coordinates

    摘要: Performance of cellular communication systems is typically enhanced by leveraging the three dimensions of system transmission bandwidth, area frequency reuse, i.e. system access point (AP) density, and spectral efficiency of employed radio air interface, referred to as the radio access technology (RAT). In particular, refined RATs are continuously introduced to compensate for limited spectrum availability and restrictions on system AP densification in cellular communication systems. While the performance of cellular communication systems is maximized by employing a single RAT providing maximal spectral efficiency, varying capabilities of user equipment compels the co-deployment of multiple RATs in cellular communication systems and entails fragmenting system radiofrequency resources between co-deployed RATs. Nevertheless, the inefficient structuring of multi-RAT systems as independently operated collocated single-RAT subsystems results in unbalanced system loading, suboptimal spectrum utilization, and the omission of multiuser diversity as a performance enhancement dimension in multi-RAT systems. The omitted dimension of multiuser diversity is exploited in this paper, through multiple means and techniques, to further enhance the performance of multi-RAT data cellular communication systems. Unifying the architectural structure of multi-RAT systems is proposed to eliminate the redundant duplication of radio access network functions and elements, reduce system deployment costs and operational complexity, improve system scalability, and enable the joint execution of non-radio transmission functions for all co-deployed RATs. By fully exploiting system multiuser diversity, the joint allocation of system radiofrequency resources under autonomous spectrum assignment is shown to substantially enhance the performance of all employed RATs, in addition to the overall performance of multi-RAT systems, without extending any of the three typical performance enhancement dimensions of cellular communication systems.

    关键词: user access,radio resource allocation,multi-radio access technology systems,user equipment,spectrum management,radio access networks,Cellular communication systems,radio access technologies

    更新于2025-09-16 10:30:52