修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Parametric Study and Optimization of Linear and Nonlinear Vibration Absorbers Combined with Piezoelectric Energy Harvester

    摘要: In this work, a harmonically excited generalized two degree of freedom non-linear system is used to manifest the functions of both the vibration absorber and energy harvester simultaneously. The generalized system has been reduced to a linear primary system with linear/nonlinear absorber and harvester or nonlinear primary system with linear/nonlinear absorber and harvester. Multi-harmonic balance method (MHBM) along with arc length continuation is used for generating frequency response plots for different absorber and energy harvester system parameters with constant primary system parameters and excitation amplitude. The frequency response plots show multiple branches of stable periodic solutions and jump at certain frequency ranges for systems with nonlinearity. The absorber and energy harvester parameters are optimized using an optimization procedure based on genetic algorithm in combination with response surface methodology. The method is validated with analytical solutions available in the literature for a linear primary system with linear absorber and harvester and nonlinear primary system with nonlinear absorber alone. This study demonstrates that the proposed optimization framework along with MHBM is suitable for generating the optimal frequency response for multifunctional energy harvesting systems or systems with nonlinear absorber. The frequency response plots with optimal parameter values reiterates the fact that the absorber system with nonlinear element perform better compared to its linear counterpart over a wider band of frequencies. The study also reports the comparison of the performance of a combined nonlinear absorber harvester system with that of a nonlinear energy sink (NES) absorber harvester system.

    关键词: vibration absorber,multi-harmonic balancing,energy harvesting,optimization,response surface method,genetic algorithm

    更新于2025-09-23 15:23:52

  • Investigation of optimal process parameters for laser cutting of Inconel-718 sheet

    摘要: Precise machining of advance material like Inconel-718 is an emerging need. Selection of an appropriate optimal range of cutting parameters is quite essential to achieve the high-quality cut and is a challenging task within this domain of study. The aim of this research is to develop a robust prediction model, which can suggest the desired range of cutting parameters for accomplishing better cutting quality, precision, and geometrical accuracy. Experiments have been performed on a 300 W (CNC-PCT 300) pulsed Nd: YAG laser cutting system at various levels of input cutting parameters, namely gas pressure, standoff distance, cutting speed, and laser power. Thereafter, response surface methodology has been adopted to develop mathematical models in terms of aforementioned input cutting parameters for geometrical quality characteristics: top kerf width and bottom kerf width. These developed models have been validated by comparing the predicted values with the experimental ones. Further, these models have been optimized using the multiobjective genetic algorithm in order to ascertain the optimal range of cutting parameters pertaining to better quality cut with high precision and geometrical accuracy.

    关键词: laser cutting,response surface method,Inconel-718,genetic algorithm

    更新于2025-09-16 10:30:52