- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
[IEEE 2018 North American Power Symposium (NAPS) - Fargo, ND, USA (2018.9.9-2018.9.11)] 2018 North American Power Symposium (NAPS) - Effect of Solar PV Penetration on Residential Energy Consumption Pattern
摘要: The residential rooftop solar penetration in the U.S. has increased rapidly over the past few years. This increase, if not properly accounted for, can lead to operational and reliability challenges for the electric power industry in the form of under-utilization of available energy, increase in costs, and reduction in environmental benefits, as demonstrated by the California Independent System Operator (CAISO) Duck Curve. The authors of this paper had previously developed a bottom-up approach for computing season-wise household-level residential energy consumption profiles using a synthetic population resource. In this paper, that model is enhanced to account for the effects that increasing percentages of rooftop solar penetration can have on the residential energy demand profiles of different regions. This information will be very useful to electric power utilities because it will help them efficiently manage the increasing numbers of residential rooftop solar installations in their supply areas.
关键词: rooftop solar photovoltaic (PV),synthetic population,residential energy consumption,Energy demand modeling,seasonal variation
更新于2025-09-23 15:22:29
-
Assessment of 50?kWp rooftop solar photovoltaic plant at The ICFAI University, Jaipur: A case study
摘要: Currently, India is espousing nonconventional energy sources at an express rate owing to concerns about climate change, emission of harmful greenhouse gases (GHG), and exhausting conventional energy sources. The solar photovoltaic (SPV) plants are, hence, expected to play a noteworthy role to meet energy security and sustainability goals. Contemporary studies reveal substantial ecological concerns associated with installing the ground mounted SPV plants in urban locations. Further observations depict that aforementioned plants need additional land, transmission, and distribution infrastructures. Consequently, rooftop SPV plants are the best solution to produce energy in urban locations, owing to the availability of a large number of empty rooftop spaces with least capacity expenditure. The present article discusses the techno-economic and ecological aspects of a 50 kWp rooftop SPV plant installed at ICFAI University, Jaipur. The plant has produced around 64.149 MWh in the year 2017. The technical assessment focuses on the effects of the meteorological parameters upon energy generation factors. The annual average final yield, reference yield, capacity utilization factor, and performance ratio found to be 106.9 kWh/kWp/month, 149.7 kWh/kWp/month, 14.64 and 70%, respectively. The economic parameters like net present value, internal rate of return, profitability index, and payback period are computed with 0–50% subsidy rates, which supports the financial viability of the plant. The plant contributed significantly to reducing GHG emissions by mitigating 102 t CO2, 128 kg SO2, 268 kg NOx, and 7,033 kg ash in the year 2017 as evident from the ecological investigation.
关键词: rooftop solar photovoltaic plant,GHG emissions,meteorological parameters,pay back period,capacity utilization factor,performance ratio
更新于2025-09-11 14:15:04
-
Performance Analysis of a Grid-Connected Rooftop Solar Photovoltaic System
摘要: Turkey is among the countries largely dependent on energy import. This dependency has increased interest in new and alternative energy sources. Installation of rooftop solar photovoltaic systems (RSPSs) in Turkey is increasing continuously regarding geographical and meteorological conditions. This paper presents an insight into the potential situation for Turkey and a simulation study for the RSPS designing and calculation for the faculty building at Marmara University in Istanbul. This simulation study demonstrates that 84.75-kWp grid-connected RSPS can produce remarkable power. The system is performed in detail with the PV*SOL software (Premium 2017 R8-Test Version, Valentin Software GmbH, Berlin, Germany). Detailed financial and performance analysis of the grid-connected RSPS for faculty building with various parameters is also carried out in this study. According to the simulation results, the system supplies 13.2% of the faculty buildings’ annual electrical energy consumption. The annual savings value of faculty buildings’ electrical consumption is approximately 90,298 kWh energy which costs roughly $7296. A photovoltaic (PV) system installation for the faculty building, which has considerable potential for solar energy and sunshine duration, is indispensable for clean energy requirements and was supported by the simulation results. This paper can be considered to be a basic feasibility study prior to moving on to the implementation project.
关键词: faculty building,performance analysis,rooftop solar photovoltaic
更新于2025-09-11 14:15:04