- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Resistive switching and electric field control of ferromagnetism in SnO2 films deposited at room temperature
摘要: The SnO2 film deposited at room temperature (RT) on the substrate of Pt/Ti/SiO2/Si is nano-crystallized, which exhibits room temperature ferromagnetism (FM) due to the oxygen vacancies of SnO2 film. The bipolar and multilevel resistive switching (RS) can be observed in the Ta/SnO2/Pt devices, where SnO2 film was deposited at RT. The Ta/SnO2/Pt device has a large ON/OFF ratio (27000) and multilevel RS, which is of great significance for high-density data storage applications. The saturation magnetization of Ta/SnO2/Pt/Ti/SiO2/Si (Ta/SnO2/Pt device) is almost the same as SnO2/Pt/Ti/SiO2/Si, which implies that the influence of Ta top electrodes on the saturation magnetization of Ta/SnO2/Pt/Ti/SiO2/Si is much less. The Ta/SnO2/Pt device shows the non-volatile and reversible saturation magnetization modulation between low resistance state (LRS) and high resistance state (HRS), which results from the formation/rupture of oxygen vacancy filaments. The saturation magnetization at LRS is higher than that at HRS. In addition, the saturation magnetization also enhances with an increase the magnitude of positive DC sweeping voltage. Without DC loop current, the saturation magnetization of Ta/SnO2/Pt increases with an application of positive electric field and drops again with an application of certain negative electric field. The saturation magnetization of Ta/SnO2/Pt can be reversibly modulated in non-volatile by only electric voltage without DC loop current. Such modulation of Ms by only electric voltage without loop DC current is connected with the change in Vo+ density in a certain range of SnO2 films.
关键词: oxygen vacancies,electric field control,room temperature ferromagnetism,resistive switching,SnO2 film
更新于2025-09-23 15:21:01
-
Room temperature ferromagnetism in ball milled Cu-doped ZnO nanocrystallines: an experimental and first-principles DFT studies
摘要: Experimental and theoretical studies on the room temperature ferromagnetism of ball milled Zn0.95Cu0.05O nanocrystalline, were reported. X-ray diffraction analysis reveals that the most dominant crystalline phase is hexagonal wurtzite with presence of weak peaks due to Cu and CuO. Rietveld analysis indicated that the crystallite size decreases with increasing milling time, while the strain enhanced with milling time. Magnetic measurements using SQUID expose remarkable room temperature ferromagnetic ordering for milled samples. The physical origin of the ferromagnetism order has been explained using a bound magnetic polaron model. Theoretical calculations based on First principles methods were employed to calculate the electronic structures and magnetic properties of Cu doping and zinc and oxygen vacancies behavior of Zn1?xCuxO. It was found that a Cu dopant leads to induce magnetism and exhibits an increasing of magnetic moment when Zn vacancy are introduced.
关键词: Room temperature ferromagnetism,Ball milled Cu-doped ZnO,Magnetic properties,Nanocrystalline,First-principles DFT
更新于2025-09-19 17:13:59
-
Transparent Collision Visualization of Point Clouds Acquired by Laser Scanning
摘要: Exploring two-dimensional (2D) materials with room-temperature ferromagnetism and large perpendicular magnetic anisotropy is highly desirable but challenging. Here, through first-principles calculations, we propose a viable strategy to achieve such materials based on transition metal (TM) embedded borophene nanosheets. Due to electron deficiency, the commonly existent hexagon boron vacancies in various borophene phases serve as intrinsic anchor points for electron-rich transition metals, which not only adsorb strongly upon the vacancies but also favor to be embedded into the vacancies, forming 2D planar hybrid nanosheets. The adsorption-to-embedding transition is feasible thermodynamically and kinetically, owing to its exothermic nature and relatively small kinetic barriers. After embedding, phase transition is further proposed to obtain diverse structures of TM embedded borophenes with versatile magnetic properties. Based on the example of χ3 phase borophene, several ferromagnetic TM embedded borophene nanosheets with high Curie temperature and large perpendicular magnetic anisotropy have been predicted.
关键词: transition metal embedded borophene nanosheets,first-principles calculations,perpendicular magnetic anisotropy,room-temperature ferromagnetism,two-dimensional materials
更新于2025-09-11 14:15:04