- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Tunable quad-band transmission response, based on single-layer metamaterials
摘要: We investigated the electromagnetically induced transparency (EIT)-like effects in planar metamaterials (MMs) at microwave (GHz) frequencies. The specific MMs that were used in this study consist of cut-wire resonator/ring resonator, which achieved the dual EIT-like effects in a single-layer through the bright- and quasi-dark-mode coupling and the lattice mode coupling. In addition, by varying the distance between the two resonators, the quad-band EIT spectral response in the microwave region was obtained, and the group refractive index at the EIT-like resonance of proposed design reached up to 4,000. This study provides the design approach to the multispectral EIT-like effects and might suggest potential applications in a variety of fields, for example, low-loss slow-light device, multiple switching sensor, and other sensing devices.
关键词: microwave frequencies,slow-light device,quad-band transmission,electromagnetically induced transparency,metamaterials
更新于2025-09-23 15:21:01
-
Triple mode coupling effect and dynamic tuning based on the zipper-type graphene terahertz metamaterial
摘要: We construct a laminated metamaterial structure of zipper-type monolayer graphene with silica which equipped with a distinctively dual plasmon induced transparency (PIT) phenomenon. The graphene pattern in this structure crafty connects with the electrode so that we can dynamically control the PIT response (via regulating the bias voltage that applied between the electrode and the substrate to control the graphene Fermi energy). In which, the range of voltage-regulate is calculated theoretically that proved to be a feasible measure for PIT response-tune. Then, the tuning discipline for this structure is summarized from the calculated result of coupled mode theory (CMT) deduced theoretical model and the simulation result. It is found that the structure possesses a great tuning performance within the tuning range we studied; also, such the structure ameliorates the monolayer graphene absorbance from 2.3% to about 50% within a broad dynamic frequency tuning range, the absorption peak frequency modulation depth is up to 45.46%. Besides, the group refractive index is discussed for reflecting the system capability of slow light, and the maximum of the coefficient can catch up to 595. Even if the impact of dielectric light- absorbance to slow light is taken into account, the slow light index at the transparent window is still as high as 200.
关键词: Absorbance,Plasmon induced transparency,Dynamic tuning,Slow light device,Graphene metamaterial
更新于2025-09-12 10:27:22
-
Tunable slow light effect based on dual plasmon induced transparency in terahertz planar patterned graphene structure
摘要: We have studied a simple novel graphene ribbon structure. A very excellent and prominent dual graphene plasmon induced transparency phenomenon could be achieved by the destructive interference resulted from the excited plasmonic modes in terahertz band. Using the simple relationship between graphene and applied voltage, a good tunable effect of this structure can be achieved. The transmission of this proposed structure is theoretically investigated by using the equivalent resonator coupled mode method. The theoretical data from our proposed method are in good agreement with the numerical simulation results. Moreover, utilizing the high dispersion property, we have also researched the slow light effect for this proposed system. The results of theoretical research have indicated that the group refractive index of our proposed structure can maintain an excellent numerical value. This investigation can play a significant role in the tunable graphene-based slow light devices.
关键词: Graphene planar metamaterial,Plasmon-induced transparency,Slow light device
更新于2025-09-12 10:27:22