修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

1992 条数据
?? 中文(中国)
  • In Situ Microwave-Assisted Fabrication of Hierarchically Arranged Metal Sulfide Counter Electrodes to Boost Stability and Efficiency of Quantum Dot-Sensitized Solar Cells

    摘要: This study describes preparation of metal sulfide counter electrodes (CEs) through one-pot microwave-assisted route to improve power conversion efficiency (PCE) of quantum dot-sensitized solar cells at a lower cost. The CuS nanorods, Ni0.96S nanoparticles, and PbS nanocubes are synthesized and deposited in situ on fluorine-doped tin oxide substrate to serve as CEs without further post-treatment. Effects of several reaction parameters including sulfur precursor (Na2S, C2H5NS, CH4N2S), Cu concentration, reaction time, and choice of cation (Cu, Ni, Pb) on the CEs morphology, electrochemical characteristics, and PCE are studied. Furthermore, nanostructure formation and thin film growth are studied and correlated with PCE, from which morphology- and composition-performance relationships can be inferred. Hierarchically assembled nanorod CuS CEs exhibit higher electrochemical stability in the S2–/Sn2– redox reaction. Together with the efficient charge transfer and higher diffusion coefficient of polysulfide redox at the electrode/electrolyte interface, deduced from electrochemical impedance spectroscopy and Tafel analyses, a PCE of 8.32% is achieved for the CuS CE. The enhanced photovoltaic performance is ascribed to the 1D CuS nanorods forming a diffusive structure which decreases charge transfer impedance and facilitates regeneration of polysulfide redox leading to a higher short-circuit current density and fill factor.

    关键词: In situ deposition,quantum dot-sensitized solar cells,counter electrode,CuS,microwave-assisted synthesis

    更新于2025-11-14 17:04:02

  • Formation of CoTe2 embedded in nitrogen-doped carbon nanotubes-grafted polyhedrons with boosted electrocatalytic properties in dye-sensitized solar cells

    摘要: Developing high active and earth-abundant electrocatalysts is a challenge for commercialization of dye-sensitized solar cells (DSSCs). Herein, a designed synthesis of CoTe2 nanoparticles embedded in nitrogen-doped carbon nanotubes-grafted polyhedron (CoTe2@NCNTs) using zeolitic imidazolate framework-67 (ZIF-67) as template is reported. Benefiting from the high surface area induced by the in situ growth of CNTs and the synergistic effect between CoTe2 and the N-doped nanostructured carbon, CoTe2@NCNTs hybrids exhibit remarkable catalytic activity toward the reduction of I3? ions. When employed as counter electrode (CE) of DSSCs, CoTe2@NCNTs hybrids deliver overwhelming power conversion efficiency (PCE) of 9.02%, possessing ~12% improvement compared with the Pt CE (8.03%). This study provides an emerging substitute for traditional Pt CE and a strategy to synthesize efficient electrocatalysts via rational surface engineering.

    关键词: Carbon nanotubes,Counter electrode,Dye-sensitized solar cells,Cobalt telluride

    更新于2025-11-14 17:04:02

  • Hierarchical ZnO microspheres embedded in TiO2 photoanode for enhanced CdS/CdSe sensitized solar cells

    摘要: Control of structural and compositional characteristics of photoanodes is a crucial step toward rapid transport of charges and high efficiency loading of dye or quantum dots in case of solar cell application. A hierarchical ZnO microspheres (ZMS) and TiO2 hybrid photoanode film was prepared for improved CdS/CdSe quantum dot sensitized solar cells (QDSCs). The addition of ZMS into TiO2 electrode films resulted in both increased short circuit current density (Jsc) and open circuit voltage (Voc). Such an improvement is ascribed to the increased light harvesting owing to scattering by ZMS and the reduced charge recombination due to the surface modification. TiO2/ZMS hybrid photoanode displays superior charge injection/transport performance due to the ZMS with unique hierarchical structure, providing charge transfer continuity and multiple electron transport channels for timely electron transport. As a result, the Jsc, Voc, and the photovoltaic conversion efficiency (PCE) were all remarkably enhanced with the insertion of hierarchical ZMS though varied appreciably with the amount of ZMS. Thus, the designed TiO2/ZMS heterostructure based QDSCs with an optimizing ZMS ratio of 20 wt% achieved a PCE of 5.99%, which is about 35% increase of the efficiency for the devices without ZMS (4.45%).

    关键词: electron transport,ZnO microspheres,charge injection,quantum dot-sensitized solar cells,photoanode,light scattering

    更新于2025-11-14 17:04:02

  • Hierarchical TiO <sub/>2</sub> microspheres composed with nanoparticle-decorated nanorods for the enhanced photovoltaic performance in dye-sensitized solar cells

    摘要: Hierarchical TiO2 microspheres composed of nanoparticle-decorated nanorods (NP-MS) were successfully prepared with a two-step solvothermal method. There were three benefits associated with the use of NP-MS as a photoanode material. The decoration of nanoparticles improved the specific surface area and directly enhanced the dye loading ability. Rutile nanorods serving as electron transport paths resulted in fast electron transport and inhibited the charge recombination process. The three-dimensional hierarchical NP-MS structure supplied a strong light scattering capability and good connectivity. Thus, the hierarchical NP-MS combined the beneficial properties of improved scattering capability, dye loading ability, electron transport and inhibited charge recombination. Attributed to these advantages, a photoelectric conversion efficiency of up to 7.32% was obtained with the NP-MS film-based photoanode, resulting in a 43.5% enhancement compared to the efficiency of the P25 film-based photoanode (5.10%) at a similar thickness. Compared to traditional photoanodes with scattering layers or scattering centers, the fabrication process for single layered photoanodes with enhanced scattering capability was very simple. We believe the strategy would be beneficial for the easy fabrication of efficient dye-sensitized solar cells.

    关键词: electron transport,dye-sensitized solar cells,solvothermal method,Hierarchical TiO2 microspheres,photovoltaic performance

    更新于2025-11-14 17:04:02

  • Improved photovoltaic performance of perovskite solar cells by utilizing down-conversion NaYF <sub/>4</sub> :Eu <sup>3+</sup> nanophosphors

    摘要: Perovskite solar cells assembled with titanium dioxide electron transport layer exhibited brilliant photovoltaic properties due to titanium dioxide having a high electron mobility, appropriate energy level alignment and easy fabrication procedure. However, inherent instability exists in titanium dioxide-based perovskite solar cells because of the ultraviolet photocatalytic activity of titanium dioxide. This results in recombination at the interface of titanium dioxide/perovskite. In this report, the down-conversion nanocrystals film made of europium-doped sodium yttrium fluoride was deposited on the non-conducting side of the conducting glass. The down-conversion nanocrystal layer could absorb high energy ultraviolet photons and converted them to visible light. The layer not only extended the spectral response range for perovskite solar cells but also alleviated the photocatalytic activity of titanium dioxide. The perovskite solar cells with the down-conversion nanocrystals film generated average power conversion efficiency yield of 19.99%, which is much better than that of the device without the down-conversion nanocrystals film (16.99%). The best power conversion efficiency for the device with the down-conversion nanocrystals film was 20.17%. In addition, perovskite solar cells with the down-conversion nanocrystals film showed a small hysteresis.

    关键词: titanium dioxide,down-conversion,NaYF4:Eu3+ nanophosphors,photovoltaic performance,perovskite solar cells

    更新于2025-11-14 17:04:02

  • Synthesis of ZnxCd1-xSe@ZnO Hollow Spheres in Different Sizes for Quantum Dots Sensitized Solar Cells Application

    摘要: ZnxCd1-xSe@ZnO hollow spheres (HS) were successfully fabricated for application in quantum dot sensitized solar cells (QDSSCs) based on ZnO HS through the ion-exchange process. The sizes of the ZnxCd1-xSe@ZnO HS could be tuned from ~300 nm to ~800 nm using ZnO HS pre-synthesized by different sizes of carbonaceous spheres as templates. The photovoltaic performance of QDSSCs, especially the short-circuit current density (Jsc), experienced an obvious change when different sizes of ZnxCd1-xSe@ZnO HS are employed. The ZnxCd1-xSe@ZnO HS with an average size distribution of ~500 nm presented a better performance than the QDSSCs based on other sizes of ZnxCd1-xSe@ZnO HS. When using the mixture of ZnxCd1-xSe@ZnO HS with different sizes, the power conversion ef?ciency can be further improved. The size effect of the hollow spheres, light scattering, and composition gradient structure ZnxCd1-xSe@ZnO HS are responsible for the enhancement of the photovoltaic performance.

    关键词: zinc oxide,alloyed quantum dots,sensitized solar cells,hollow spheres

    更新于2025-11-14 17:04:02

  • Carbon Black and Titanium Interlayers Between Zinc Oxide Photo Electrode and Fluorine-Doped Tin Oxide for Dye-Sensitized Solar Cells

    摘要: Carbon black and titanium interlayers were deposited on ?uorine-doped tin oxide (FTO) anode layers using radio frequency magnetron sputtering method. On top of them, Zinc oxide (ZnO) photo anode layers were prepared using plasma enhanced chemical vapor deposition technique. ZnO high binding energy as well as good breakdown strength, cohesion, and stability used as a photo electrode material for dye-sensitized solar cells (DSSC), but it does not have a good electrical contact to the FTO anode. To solve this problem, the carbon black and titanium interlayers were deposited. The effect of interlayers on the power conversion ef?ciency (PCE) of DSSCs was investigated. The PCE of the devices with 120-nm-thick interlayers of carbon black or titanium was 5.21 or 4.45%, respectively, which were larger than the PCE of the devices without such interlayers (3.25%). The smooth interface of the carbon black interlayer reduced the interface impedance of the ZnO photo anode effectively. On the other hand, the titanium interlayer with TiO2 on the ZnO side increased the impedance, and decreased the PCE.

    关键词: Fluorine-Doped Tin Oxide,Titanium,Carbon Black,Dye-Sensitized Solar Cells

    更新于2025-11-14 17:04:02

  • Synthesis of porous NiMo sulphide microspheres for high-Performance dye-sensitized solar cells and supercapacitor

    摘要: Novel hierarchical porous NiMoS4 microspheres with high electrochemical performance was successfully prepared using a facile one-step hydrothermal method. The dual application of porous NiMoS4 microspheres in energy harvesting and storage (ie, dye-sensitized solar cells (DSSCs) and supercapacitors (SCs) respectively) is explored. In contrast to NiS2 nanosheets, MoS2 nanosheets and Pt counter electrodes (CEs), the NiMoS4 microspheres CE demonstrated the lowest charge transfer resistance and highest electrocatalytic activity for the I3?/I? redox couple reaction. The NiMoS4-based DSSC showed a high power conversion efficiency (8.9%) even than that of Pt-based DSSC (8.7%) under simulated standard global AM 1.5G sunlight (100 mW cm?2). As an electroactive material for SCs, the assembled NiMoS4//AC asymmetric supercapacitor showed excellent specific capacitance (118.7 F g?1 at 1 A g?1), high energy density of 42.2 Wh kg?1 (with a power density of 799.2 W kg?1), and superior cycling durability with a specific capacitance retention of 79.5% after 9000 cycles at 3 A g?1.

    关键词: Asymmetric supercapacitor,Ni-Mo sulfide,Microspheres,Dye-sensitized solar cells

    更新于2025-11-14 17:04:02

  • Synthesis of CoNi bimetallic alloy nanoparticles wrapped in nitrogen-doped graphite-like carbon shells and their electrocatalytic activity when used in a counter electrode for dye-sensitized solar cells

    摘要: Nanoparticles of the bimetallic alloy CoNi wrapped in nitrogen-doped graphite-like carbon shells and dispersed on nitrogen-doped graphite-like carbon sheets (CoxNi1?x@NC) were synthesized by calcining CoNi metal–organic frameworks that were prepared through a facile solvothermal reaction using various raw-material molar ratios Co:Ni and CoNi:ethylenedinitrilotetraacetic acid. After depositing CoxNi1?x@NC for use as a counter electrode film in dye-sensitized solar cells, it was found that the electrocatalytic activity of the CoxNi1?x@NC counter electrode towards triiodide reduction could be optimized by simply tuning the molar ratios (Co:Ni and CoNi:ethylenedinitrilotetraacetic acid) appropriately during CoxNi1?x@NC synthesis. Cells that utilized a CoxNi1?x@NC counter electrode exhibited strong chemical-composition-dependent photovoltaic performance. Under optimal conditions, the CoxNi1?x@NC counter electrode presented an impressive energy conversion efficiency of 3.58%, suggesting that it is a highly promising counter electrode for application in dye-sensitized solar cells. This counter electrode has the advantages that it is considerably less expensive than a Pt counter electrode and that it provides the basis for the design and preparation of other inexpensive and efficient counter electrodes to replace Pt.

    关键词: Photovoltaic performance,Dye-sensitized solar cells,CoNi alloy bimetallic nanoparticles,Counter electrode,Electrocatalytic activity

    更新于2025-11-14 17:04:02

  • The Size Effect of TiO2 Hollow Microspheres on Photovoltaic Performance of ZnS/CdS Quantum Dots Sensitized Solar Cell

    摘要: Size controllable TiO2 hollow microspheres (HMS) were synthesized by a carbonaceous spheres (CS) template method. Based on TiO2 HMS, the ZnS/CdS quantum dots (QDs) were loaded to form a ZnS/CdS@TiO2 HMS photoanode for quantum dots sensitized solar cell (QDSSC). The size effects of TiO2 HMS on photovoltaic performance were investigated, and showed that TiO2 HMS with sizes ~560 nm produced the best short-circuit current density (Jsc) of 8.02 mA cm?2 and highest power conversion efficiency (PCE) of 1.83%, showing a better photovoltaic performance than any other QDSSCs based on TiO2 HMS with size ~330 nm, ~400 nm, and ~700 nm. The improvement of photovoltaic performance based on ~560 nm TiO2 HMS which can be ascribed to the enhanced light harvesting efficiency caused by multiple light reflection and strong light scattering of TiO2 HMS. The ultraviolet-visible (UV-vis) spectra and incident photo to the current conversion efficiency (IPCE) test results confirmed that the size of TiO2 HMS has an obvious effect on light harvesting efficiency. A further application of ~560 nm TiO2 HMS in ZnS/PbS/CdS QDSSC can improve the PCE to 2.73%, showing that TiO2 HMS has wide applicability in the design of QDSSCs.

    关键词: titanium dioxide,quantum dots sensitized solar cells,hollow microspheres

    更新于2025-11-14 17:04:02