修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Prediction of the Suna??s Coronal Magnetic Field and Forward-modeled Polarization Characteristics for the 2019 July 2 Total Solar Eclipse

    摘要: On 2019 July 2 a total solar eclipse—visible across parts of the Southern Pacific Ocean, Chile, and Argentina—enabled observations of the Sun’s corona. The structure and emission characteristics of the corona are determined by underlying magnetic fields, which also govern coronal heating and solar eruptive events. However, coronal magnetic field measurements remain an outstanding challenge. Coronal magnetic field models serve an important purpose in this context. Earlier work has demonstrated that the large-scale coronal structure is governed by surface flux evolution and memory buildup, which allows for its prediction on solar rotational timescales. Utilizing this idea and based upon a 51 day forward run of a predictive solar surface flux transport model and a potential field source surface model, we predict the coronal structure of the 2019 July 2 solar eclipse. We also forward model the polarization characteristics of the coronal emission. Our prediction of two large-scale streamer structures and their locations on the east and west limbs of the Sun match eclipse observations reasonably well. We demonstrate that the Sun’s polar fields strongly influence the modeled corona, concluding that accurate polar field observations are critical. This study is relevant for coronal magnetometry initiatives envisaged with the Daniel K. Inouye Solar Telescope, Coronal Multichannel Polarimeter and upcoming space-based instruments such as Solar Orbiter, Solar Ultraviolet Imaging Telescope and the Variable Emission Line Coronagraph on board the Indian Space Research Organisation’s Aditya-L1 space mission.

    关键词: Solar magnetic fields,Magnetohydrodynamics,Polarimetry,Solar corona,Solar eclipses

    更新于2025-09-23 15:19:57

  • Laboratory precision measurements of optical emissions from coronal iron

    摘要: Total solar eclipses, as the recent one seen across North America, are rare opportunities for optical spectroscopy of the corona. In view of the dearth of accurate rest-frame wavelength data, we measured 11 of the strongest optical coronal lines belonging to Fe X-XIV thereby proving the existence of the Fe XII line at 290.385(8) nm. Four lines, such as the green coronal line at 530.28113(13) nm, were measured with unprecedented precision, allowing in principle for absolute velocity determinations of plasmas with uncertainties of 0.08 km s?1. These results furthermore stringently benchmark the theory of complex open-3p-shell ions.

    关键词: solar eclipses,coronal iron,optical emissions,spectroscopy,precision measurements

    更新于2025-09-04 15:30:14