修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

894 条数据
?? 中文(中国)
  • Inverted pyramid Er3+ and Yb3+ Co-doped TiO2 nanorod arrays based perovskite solar cell: Infrared response and improved current density

    摘要: In this study, a Yb3+, Er3+ co-doped TiO2 inverted pyramid nanorod (NR) array and a compact TiO2 ?lm are simultaneously fabricated as the mesoporous support layer and electron-blocking layer, respectively, by a one-pot hydrothermal method. The scanning electron microscopy results show that the incorporation of Er3+ and Yb3+ causes changes not only in the growth rate of the NRs, but also in the TiO2 NR morphology. The Er3+, Yb3+ co-doped TiO2 NRs exhibit an inverted pyramidal morphology, which is bene?cial for perovskite permeation and light utilization. Notably, the Er3+, Yb3+ co-doping causes changes in the band gap of TiO2 and leads to 25% increase in the current density. The electrochemical impedance spectroscopy results show that the device based on the doped TiO2 NRs has a higher recombination resistance and a lower transfer resistance than those of the undoped device, and thereby, the doped device exhibits a lower electron recombination rate. In addition, the upconversion Er and Yb co-doped device exhibits 25% higher current density and 17% higher photon-to-electron conversion e?ciency, as revealed by the J-V test results. Moreover, the optimized e?ciency of the TiO2 NR array-based perovskite solar cell is determined to be 10.02%. Furthermore, the Er and Yb co-doped device exhibits a near-infrared response, an e?ciency of 0.1% is achieved under infrared light (800–1100 nm) irradiation. This upconversion material can widen the photovoltaic responses of solar cells into the near-infrared region and improve the utilization of sunlight.

    关键词: Infrared response,Yb3+,Er3+ co-doped,TiO2 nanorods,Perovskite solar cell

    更新于2025-09-23 15:19:57

  • An efficient visible-light-responsive surface charge transfer complex AA-TiO2 based dye-sensitized solar cell

    摘要: This work investigated a new strategy for visible light responsive dye-sensitized solar cell: the ligand-to-metal charge transfer (LMCT) takes place between TiO2 nanoparticles and ascorbic acid (AA). The surface LMCT complex AA-TiO2 extended the spectral responsive range to 800 nm and exhibited prominent visible light activity, enhancing utilization of the solar spectrum. The optimal photovoltaic conversion efficiency of the visible-light-responsive AA-TiO2 based dye-sensitized solar cell reach value of 3.50%. The low-cost, non-toxic and environment friendly surface adsorbate AA will demonstrate a feasible approach for replacing the most common used ruthenium complex dyes, thereby offering a strategy for development of low-cost and high efficiency DSSCs.

    关键词: Dye-sensitized solar cell,Surface complex,Ligand-to-metal charge transfer (LMCT),Ascorbic acid,Visible light activity

    更新于2025-09-23 15:19:57

  • A Trifluoromethyl Group Modified Non-fullerene Acceptor Towards Improved Power Conversion Efficiency Over 13% in Polymer Solar Cells

    摘要: Herein, we report a new molecule structure modification strategy for non-fullerene small molecule electron acceptors (NFAs) for solar cells through trifluoromethylation of end-capping groups. The synthesized trifluoromethylated acceptor ITCF3 exhibits narrower band gap, stronger light absorption, lower molecular energy levels and better electron transport property comparing to the reference NFA without trifluoromethyl group (ITIC). Bulk heterojunction solar cells based on ITCF3 combined with PM6 polymer donor exhibit a significantly improved power conversion efficiency of 13.3% comparing with ITIC-based device (8.4%). This work reveals great potential of trifluoromethylation in design of efficient photovoltaic acceptor materials.

    关键词: power conversion efficiency,non-fullerene acceptor,trifluoromethyl group,organic solar cell,polymer

    更新于2025-09-23 15:19:57

  • Simulation of three types of nanoparticles on solar cell structure model

    摘要: In this paper, we systemically and numerically investigate the effects of three types of Nanoparticles on the efficiency of solar cells. Finite Difference Time Domain method has been implemented to compute the absorption spectra in such proposed solar cell structure. High efficiency has been achieved by optimizing the nanoparticles layer by tuning the fraction of nanoparticles on the host layer.

    关键词: Thin-film solar cell,FDTD,absorption,metal nanoparticles,reflection

    更新于2025-09-23 15:19:57

  • Tuning the Color Palette of Semi-Transparent Solar Cells via Lateral ??-Extension of Polycyclic Heteroaromatics of Donora??Acceptor Dyes

    摘要: Durable solar cells with tunable color and diaphaneity are very promising for building integrated photovoltaic applications. In this paper we employ donor–acceptor organic dyes U3, U4, U5, and R6 featured by polycyclic heteroaromatics 6,12-dihydroindeno[1,2-b]indeno[2',1':4,5]thieno[2,3-d]thiophene (IT2), 7,15-dihydrobenzo[6',7']indeno[2',1':4,5]thieno[3,2-b]benzo[6,7]indeno[2,1-d]thiophene (BIT2), 7,15-dihydrophenaleno[1,2-b]phenaleno[2',1':4,5]thieno[2,3-d]thiophene (PT2), and 9,19-dihydrobenzo[1',10']phenanthro[3',4':4,5]thieno[3,2-b]benzo[1,10]phenanthro[3,4-d]thiophene (BPT2) to fabricate semi-transparent dye-sensitized solar cells (DSSCs). The U3, U4, U5, and R6 based cells are goldenrod, crimson, red, and sapphire blue, with power conversion efficiencies of 3.5%, 8.2%, 7.6, and 10.1% at the AM1.5G conditions. Density functional theory calculation and voltammetric measurement reveal that lateral π-extension of polycyclic heteroaromatic brings forth a downward displacement of lowest unoccupied molecular orbital, affording a high molar extinction coefficient, low-energy gap blue dye. Femtosecond fluorescence decay measurements of dyed titania and alumina films unravel the electron injection yields of photo-excited dye molecules, which are well correlated with the maximal values of external quantum efficiencies of DSSCs. After 1,000 h full sunlight soaking at 60 oC, the red and blue DSSCs exhibit stable photocurrents, owing to the strong bonding and photochemical stability of dye molecules adsorbed on the surface of titania as well as the retention of close-to-unity electron collection yield.

    关键词: electron injection,durability,tunable color,semi-transparent solar cell,lateral π-extension,photosensitizer

    更新于2025-09-23 15:19:57

  • Optimized Molecular Packing and Nonradiative Energy Loss Based on Terpolymer Methodology Combining Two Asymmetric Segments for High-Performance Polymer Solar Cells

    摘要: In this work, a random terpolymer methodology combining two electron-rich units, asymmetric thienobenzodithiophene (TBD) and thieno[2,3-f]benzofuran (TBF) segments, is systematically investigated. The synergetic effect is embodied on the molecular packing and nanophase when copolymerization with 1,3-bis(2-ethylhexyl)benzo[1,2-c:4,5-c']dithiophene-4,8-dione (BDD), producing an impressive power conversion efficiency (PCE) of 14.2% in IT-4F based NF-PSCs, which outperformed the corresponding D-A copolymers. The balanced aggregation and better interpenetrating network of the TBD50:IT-4F blend film can lead to mixing region exciton splitting and suppress carrier recombination, along with high yields of long-lived carriers. Moreover, the broad applicability of terpolymer methodology is successfully validated in most electron-deficient systems. Especially, TBD50/Y6-based device exhibits high PCE of 15.0% with a small energy loss (0.52 eV) enabled by the low non-radiative energy loss (0.22 eV), which are among the best values reported for polymers without using BDT unit to date. These results demonstrate an outstanding terpolymer approach with backbone engineering to raise the hope of achieving even higher PCEs and to enrich organic photovoltaic materials reservoir.

    关键词: asymmetrical structure,microstructure,random terpolymer,nonfullerene solar cell,non-radiative energy loss,power conversion efficiency

    更新于2025-09-23 15:19:57

  • Zwitterion-Stabilizing Scalable Bladed ?±-Phase Cs <sub/>0.1</sub> FA <sub/>0.9</sub> PbI <sub/>3</sub> Films for Efficient Inverted Planar Perovskite Solar Cells

    摘要: Perovskite solar cells (PSCs) have attracted considerable attention as a prominent photovoltaic technology, yet the state-of-the-art PSCs still contain thermally unstable methylammonium (MA) cations and use laboratory-level assembly methods, making the device's stability and scalability challenging. Herein, we demonstrate a generic zwitterion-assisted strategy to improve the efficiency and stability of formamidinium (FA)-based PSCs made by scalable blade-coating technique. The zwitterion, 3-(1-pyridinio)-1-propanesulfonate (PPS), plays dual roles in effectively suppressing the formation of undesirable δ-phase and passivating the trap states of FA-based perovskite films. As a consequence, uniform FA-based perovskite films with area as large as 16 cm2 were successfully obtained and the small-area (0.1 cm2) device incorporating PPS achieved a champion efficiency up to 18.9%, as well as enabled a best efficiency of 16.2% for large-area (1 cm2) device. More importantly, unencapsulated devices with PPS also exhibited superior thermal and moisture stability, remaining at 88% of initial efficiency after aging in air for 1000 h. This methodology provides a low-cost and facile pathway to realize the synergistic effect of crystallization modulation and defect passivation for large-scale perovskite devices with excellent optoelectronic performance and stability.

    关键词: formamidinium-based films,perovskite solar cell,blade-coating,stability,defect passivation

    更新于2025-09-23 15:19:57

  • Direct dynamic evidence of charge separation in a dyea??sensitized solar cell under operando conditions by Raman spectroscopy

    摘要: Interfaces play an important role in enhancing the energy conversion performance of dye-sensitized solar cells (DSCs). The interface effects have been studied by many techniques, but almost all studies only performed on a portion of DSC, rather than on a complete solar cell. Hence, monitoring the interface evolution of a DSC is still very challenging. Here, in situ/operando resonance Raman (RR) spectroscopic analyses were carried out to monitor the dynamic observations of the photovoltaic conversion process from a DSC. We observed the creation of new species (i.e., polyiodide and iodine aggregates) in the photosensitization process. We also successfully identified molecular-scale dynamic evidence that the bands from the C═C of 2,2’-bipyridyl (bpy), the S═C═N of NCS ligand and photochemical products show reasonably strong intensity and frequency changes, which clearly demonstrates that they are important pathways of charge separation. Furthermore, RR spectroscopy also be applicable to quickly evaluate the performance of DSCs.

    关键词: dye-sensitized solar cell,semiconductor,TiO2 nanotube array,Raman spectroscopy,charge transfer

    更新于2025-09-23 15:19:57

  • White Painting Pigment as a Low-Cost Light Scattering Material for Bilayer Photoelectrodes of Dye-Sensitized Solar Cells

    摘要: White pigment (DuPont R902+) has been used as a light scattering material in the preparation of bilayer photoelectrodes of dye-sensitized solar cells (DSCs). The X-ray diffraction (XRD) pattern of the white pigment revealed that the material consists of rutile phase of titanium dioxide. The light scattering layer prepared from the white pigment was coated onto the main-layer of the photoelectrodes of DSCs. The solar cells with and without light scattering layer were tested in the simulated light of 100 mW/cm2. The DSCs with the light scattering layer generated more current density than the DSCs without scattering layer and the overall light to electric power conversion efficiency of DSCs with the light scattering layer was ~4.00 % compared with 3.25 % efficiency of the DSCs without the scattering layer.

    关键词: Dye-sensitized solar cell,Photoelectrode,Light scattering layer,Transmittance,White pigment (R902+),Rutile titanium dioxide

    更新于2025-09-23 15:19:57

  • Poly(ethylene glycol)a??poly(propylene glycol)a??poly(ethylene glycol) and polyvinylidene fluoride blend doped with oxydianiline-based thiourea derivatives as a novel and modest gel electrolyte system for dye-sensitized solar cell applications

    摘要: Unique symmetrical thiourea derivatives with an oxydianiline core were synthesized using cost-effective and simple methods. A new gel electrolyte system was prepared using these thiourea additives along with a highly conductive PEG–PPG–PEG block copolymer, PVDF, and an iodide/triiodide redox couple. The PEG units present in the electrolyte are well-known for their intense segmental motion of ions, which can degrade the recombination rate and favour the charge transfer. The thiourea additives interacted well with the redox couple to limit iodine sublimation and their adsorption induced a negative potential shift for TiO2. The highest efficiency attained by utilizing such gel polymer electrolytes was 5.75%, especially with 1,10-(oxybis(4,1-phenylene))bis(3-(6-methylpyridin-2-yl) thiourea) (OPPT), under an irradiation of 100 mW cm?2. The electrochemical impedance spectroscopy, UV-vis absorption spectroscopy, differential scanning calorimetry, and FTIR spectroscopy data of such gel polymer electrolytes favoured the PCE order of the additives used in DSSCs. The improvement in the DSSC performance with symmetrical thioureas having electron-rich atoms was practically attributed to the reduction of back electron transfer, dye regeneration, and hole transport.

    关键词: Poly(ethylene glycol),poly(ethylene glycol),dye-sensitized solar cell,polyvinylidene fluoride,poly(propylene glycol),oxydianiline-based thiourea derivatives,gel electrolyte system

    更新于2025-09-23 15:19:57