- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Efficiency and Quality Issues in the Production of Black Phosphorus by Mechanochemical Synthesis: A Multi-Technique Approach
摘要: Black phosphorus (BP) is a two-dimensional material potentially of great interest for applications in the fields of energy, sensing, and microelectronics. One of the most interesting methods to obtain BP is the conversion from red phosphorus (RP) by means of high-energy mechanochemical synthesis. To date, however, this synthesis process was not well characterized. In this work, starting from the mathematical model of energy transfer during the ball milling process, we investigate the effects on RP → BP conversion of three experimental parameters, the rotation speed, the milling time, and the weight ratio between the spheres and the milled material (BtPw ratio). The efficiency of the conversion process was verified by solid-state NMR, Raman spectroscopy, and X-ray diffraction. Whereas the first two parameters have a minor importance, the BtPw ratio plays a primary role in the RP → BP conversion. Yields approaching 100% can be obtained also with short milling times (15 min) and adequate rotation speed (e.g., 500 r.p.m.), provided that the BtPw ratio >40:1 is used. These results confirm the energy sustainability of the mechanochemical synthesis approach.
关键词: diffraction,solid-state NMR,anode,post-lithium ion batteries,Raman,mechanochemical synthesis
更新于2025-11-21 11:18:25
-
The Phase Behavior in the Active Layer of Small Molecule Organic Photovoltaics: The State Diagram of p-DTS(FBTTh <sub/>2</sub> ) <sub/>2</sub> :PC <sub/>71</sub> BM
摘要: A comprehensive study was undertaken to obtain a more fundamental understanding of the phase behavior of the p-DTS(FBTTh2)2:PC71BM system, used in small molecule organic solar cells, with a strong focus on the amorphous phase and its influence on crystallinity. Three dedicated thermal protocols were used in combination with advanced thermal analysis, solid-state NMR, and wide angle X-ray diffraction. Rapid cooling, to avoid structure formation and gain insight in the amorphous phase, and slow cooling, to promote structure formation, were used as limiting cases to explain the intermediate behavior after device processing from solution. A complete state diagram was developed and the glass transition (Tg) - composition relationship was determined. In the case of slow cooling and the procedure used for device processing, the rapid crystallization of p-DTS(FBTTh2)2 leads to an enrichment of the amorphous phase in PC71BM, increasing its Tg and causing vitrification of the mixed amorphous phase before crystallization when the total amount of PC71BM exceeds 70 wt%. The common processing additive 1,8-diiodooctane (DIO) was found to lead to a lower p-DTS(FBTTh2)2 crystallinity and smaller average crystal size. More importantly, it acts as a strong plasticizer, lowering Tg significantly and thus reducing the morphological stability of the p-DTS(FBTTh2)2:PC71BM mixtures.
关键词: p-DTS(FBTTh2)2:PC71BM,glass transition temperature,wide angle X-ray diffraction,phase behavior,crystallinity,amorphous phase,small molecule organic photovoltaics,thermal analysis,solid-state NMR,1,8-diiodooctane (DIO)
更新于2025-09-23 15:19:57
-
Understanding the High Performance of over 15% Efficiency in Single‐Junction Bulk Heterojunction Organic Solar Cells
摘要: The highly efficient single-junction bulk-heterojunction (BHJ) PM6:Y6 system can achieve high open-circuit voltages (VOC) while maintaining exceptional fill-factor (FF) and short-circuit current (JSC) values. With a low energetic offset, the blend system is found to exhibit radiative and non-radiative recombination losses that are among the lower reported values in the literature. Recombination and extraction dynamic studies reveal that the device shows moderate non-geminate recombination coupled with exceptional extraction throughout the relevant operating conditions. Several surface and bulk characterization techniques are employed to understand the phase separation, long-range ordering, as well as donor:acceptor (D:A) inter- and intramolecular interactions at an atomic-level resolution. This is achieved using photo-conductive atomic force microscopy, grazing-incidence wide-angle X-ray scattering, and solid-state 19F magic-angle-spinning NMR spectroscopy. The synergy of multifaceted characterization and device physics is used to uncover key insights, for the first time, on the structure–property relationships of this high-performing BHJ blend. Detailed information about atomically resolved D:A interactions and packing reveals that the high performance of over 15% efficiency in this blend can be correlated to a beneficial morphology that allows high JSC and FF to be retained despite the low energetic offset.
关键词: organic photovoltaics,charge extraction,recombination,solid-state NMR,low voltage losses
更新于2025-09-19 17:13:59
-
Insights into the formation of N doped 3D-Graphene Quantum Dots. Spectroscopic and Computational Approach
摘要: In this work, we utilize a top-down approach to synthesize nitrogen doped graphene quantum dots from a 3D-graphene precursor via an eco-friendly hydrothermal method. The nanoparticles obtained showed a 2-3 nm diameter and well dispersion behavior in aqueous media. The reaction mechanism of insertion of nitrogen from polyvinylpolypyrrolidone onto the 3D-graphene structure, via an esterification reaction, was studied by the density functional theory, in addition, the kinetic and thermodynamic magnitudes of the reaction was analyzed with the help of Eyring's transition state theory and statistical thermodynamics. After analysis by ss-NMR and XPS spectroscopies, the functional groups involved in this process were characterized, and N was found mainly as amide / amine groups. Fluorescence emission, which exhibited a red shift (552 nm) and an emission maximum at 512 nm when excited at 480 nm, demonstrated a low stoke shift (Δλ =32 nm), explained by the proposed structural model.
关键词: XPS,solid-state NMR,Nitrogen doped graphene quantum dots,DFT calculations
更新于2025-09-12 10:27:22
-
Synthesis, characterization and modeling of self-assembled porphyrin nanorods
摘要: Porphyrin nanorods were prepared by ion-association between free-base meso 5,10,15,20-tetrakis-(4-N-methylpyridinium)porphyrin cations and tetraphenylborate anions. The nanorods have variable lengths (up to a few micrometers long) and diameters (~50–500 nm). Their structure at the molecular level was elucidated by combining multinuclear solid state NMR spectroscopy, synchrotron X-ray powder diffraction and DFT calculations.
关键词: DFT modeling,solid state NMR,NMR crystallography,nanorods,porphyrin,self-assembly
更新于2025-09-11 14:15:04
-
Radical induced cationic frontal twin polymerization of Si-spiro compound in combination with bisphenol-A-diglycidylether
摘要: The radical induced cationic frontal polymerization (RICFP) of the twin monomer with 2,2’-spirobi[4H-1,3,2-benzodioxasiline] combination (SPIRO) in bisphenol-A-diglycidylether (BADGE) has been developed to fabricate nanostructured hybrid material with domain sizes of 2–5 nm. In one reaction step, an interpenetrating network of phenolic resin, SiO2 and the epoxy resin is formed in a very short time period, initiated by UV light. That indicates that both polymerization reactions take place simultaneously. The influence of monomer composition on molecular structure was investigated by means of solid state NMR spectroscopies. The envisaged nanostructure of the resulting organic-inorganic hybrid materials is proven by transmission electron microscopy high-angle annular dark-field scanning (HAADF-STEM). The thermal properties of the hybrid materials are comparable to “state of the art” materials with the advantage that the silica quantity can be adjusted on demand.
关键词: Nanostructured hybrid material,HAADF-STEM,Solid state NMR spectroscopy,Radical induced cationic frontal polymerization,Twin polymerization
更新于2025-09-11 14:15:04
-
Investigation of Structure and Dynamics in a Photochromic Molecular Crystal by NMR Crystallography
摘要: A photochromic anil, N-(3,5-di-t-butylsalicylidene)-4-amino-pyridine, has been studied by single-crystal X-ray diffraction, multinuclear magic-angle spinning NMR and first-principles density functional theory (DFT) calculations. Interpretation of the solid-state NMR data on the basis of calculated chemical shifts confirms the structure is primarily composed of molecules in the ground-state enol tautomer, while thermally-activated cis-keto and photoisomerised trans-keto states exist as low-level defects with populations that are too low to detect experimentally. Variable temperature 13C NMR data reveals evidence for solid-state dynamics which is found to be associated with fast rotational motion of t-butyl groups and 180° flips of the pyridine ring, contrasting the time-averaged structure obtained by X-ray diffraction. Comparison of calculated chemical shifts for the full crystal structure and an isolated molecule also reveals evidence for an intermolecular hydrogen-bond involving the pyridine ring and an adjacent imine carbon which facilitates the flipping motion. The DFT calculations also reveal that the molecular conformation in the crystal structure is very close to the energetic minimum for an isolated molecule, indicating that the ring dynamics arise as a result of considerable steric freedom of the pyridine ring and which also allows the molecule to adopt a favourable conformation for photochromism.
关键词: NMR crystallography,photochromic,anil,solid-state NMR,DFT calculations,molecular dynamics
更新于2025-09-09 09:28:46
-
Using NMR Relaxometry to Probe Yb <sup>3+</sup> – Er <sup>3+</sup> Interactions in Highly Doped Nanocrystalline NaYF <sub/>4</sub> Nanostructures
摘要: Solid–state nuclear magnetic resonance (NMR) spectroscopy is used to study heavily Yb3+ and Er3+ doped, fluorescent NaY1–x–yYbxEryF4 nanoparticles. An understanding of the 19F wide line NMR response suggests that the 0 ppm portion of the 19F NMR spectrum can be used as a probe of trivalent lanthanide content via spin lattice relaxation time changes. A Yb3+ and Er3+ magnetic interaction is manifest as a cooperative contribution to the 19F spin lattice relaxation rate in heavily co–doped nanoparticle samples. The results from this study will help understand the mechanism of enhanced optical up–conversion among these well–known nanostructures.
关键词: Solid–State NMR,Yb3+ – Er3+ Interactions,Nanocrystalline NaYF4,Optical Up–Conversion,NMR Relaxometry
更新于2025-09-04 15:30:14
-
Improving the sensitivity of <i>J</i> coupling measurements in solids with application to disordered materials
摘要: It has been shown previously that for magic angle spinning (MAS) solid state NMR the refocused INADEQUATE spin-echo (REINE) experiment can usefully quantify scalar (J) couplings in disordered solids. This paper focuses on the two z filter components in the original REINE pulse sequence, and investigates by means of a product operator analysis and fits to density matrix simulations the effects that their removal has on the sensitivity of the experiment and on the accuracy of the extracted J couplings. The first z filter proves unnecessary in all the cases investigated here and removing it increases the sensitivity of the experiment by a factor ~1.1–2.0. Furthermore, for systems with broad isotropic chemical shift distributions (namely whose full widths at half maximum are greater than 30 times the mean J coupling strength), the second z filter can also be removed, thus allowing whole-echo acquisition and providing an additional √2 gain in sensitivity. Considering both random and systematic errors in the values obtained, J couplings determined by fitting the intensity modulations of REINE experiments carry an uncertainty of 0.2–1.0 Hz (~1?10 %).
关键词: solid state NMR,disordered materials,REINE experiment,J coupling,sensitivity improvement
更新于2025-09-04 15:30:14