- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Microwave-Assisted Synthesis of Quasi-Pyramidal CuInS <sub/>2</sub> -ZnS Nanocrystals for Enhanced Near-Infrared Targeted Fluorescent Imaging of Subcutaneous Melanoma
摘要: Near-infrared (NIR) fluorescent CuInS2–ZnS nanocrystals (CIZS NCs) are synthesized via an ultra-fast, non-injection microwave (MW)-assisted nanoalloying process at 230 oC within 5 min using 1-dodecanethiol (DDT) as both the sulfur source and solvent under solvothermal (ST) condition. The structural and surface analyses reveal that DDT-functionalized CIZS NCs exhibit quasi-pyramids of tetragonal-phase with well-defined facets. The DDT-functionalized CIZS NCs present a photoluminescence quantum yield (PLQY) of 76% and a long-lived fluorescence lifetime of ≈0.6 μs in organic-phase. Subsequently, DDT-functionalized CIZS NCs are phase-transferred via ligand-exchange using 11-mercaptoundecanoic acid (MUA) into water-soluble MUA–CIZS NCs that exhibit a substantial PLQY of 55%. In addition, the NIR-fluorescent MUA-functionalized CIZS NCs in conjugation with folic acid (FA), as a tumor-targeting ligand, demonstrates enhanced tumor-targeted imaging ability. The FA–MUA–CIZS NC conjugates exhibit a cell viability of ≈75% even at the highest concentration of 1 mg mL–1 and a labeling efficiency of 95.4%. The in vivo imaging results corroborate that FA–MUA–CIZS NCs conjugates are actively targeted to folate receptor-positive B16F10 tumor-bearing C57BL/6 mice in 2 h. The histopathological and hematological studies confirm no significant changes in tissue architecture and blood biochemical parameters. The confocal microscopy studies reveal deep penetration and uniform distribution of FA–MUA–CIZS NCs conjugates in subcutaneous melanoma.
关键词: CuInS2–ZnS nanocrystals,nano-bioprobe,nanoalloying approach,targeted bioimaging,microwave-solvothermal method
更新于2025-11-21 11:08:12
-
Hierarchical TiO <sub/>2</sub> microspheres composed with nanoparticle-decorated nanorods for the enhanced photovoltaic performance in dye-sensitized solar cells
摘要: Hierarchical TiO2 microspheres composed of nanoparticle-decorated nanorods (NP-MS) were successfully prepared with a two-step solvothermal method. There were three benefits associated with the use of NP-MS as a photoanode material. The decoration of nanoparticles improved the specific surface area and directly enhanced the dye loading ability. Rutile nanorods serving as electron transport paths resulted in fast electron transport and inhibited the charge recombination process. The three-dimensional hierarchical NP-MS structure supplied a strong light scattering capability and good connectivity. Thus, the hierarchical NP-MS combined the beneficial properties of improved scattering capability, dye loading ability, electron transport and inhibited charge recombination. Attributed to these advantages, a photoelectric conversion efficiency of up to 7.32% was obtained with the NP-MS film-based photoanode, resulting in a 43.5% enhancement compared to the efficiency of the P25 film-based photoanode (5.10%) at a similar thickness. Compared to traditional photoanodes with scattering layers or scattering centers, the fabrication process for single layered photoanodes with enhanced scattering capability was very simple. We believe the strategy would be beneficial for the easy fabrication of efficient dye-sensitized solar cells.
关键词: electron transport,dye-sensitized solar cells,solvothermal method,Hierarchical TiO2 microspheres,photovoltaic performance
更新于2025-11-14 17:04:02
-
In situ synthesis of ternary nickel iron selenides with high performance applied in dye-sensitized solar cells
摘要: Comparing with the binary chalcogenides, the ternary chalcogenides may achieve higher electrical conductivity and electrochemical activity due to the synergistic effect of the different metal cations. Herein, ternary nickel iron selenide (Ni0.5Fe0.5Se2) was fabricated through a facile one-pot solvothermal method with the assistance of glucose for the first time. The dye-sensitized solar cells (DSSCs) were assembled with the as-prepared Ni0.5Fe0.5Se2 as counter electrode (CE). Electrochemical measurements indicated that the Ni0.5Fe0.5Se2 possessed small electron transfer resistance at the interface between electrode and electrolyte, great electrocatalytic activity and reaction kinetics toward the reduction of triiodide. Compared with conventional Pt CE (7.24%), the DSSCs based on Ni0.5Fe0.5Se2 CE achieved a greater power conversion efficiency of 7.89%. Furthermore, this study provides a new idea and strategy with convenient method to synthesize Pt-free alternative materials.
关键词: Counter electrode,Solvothermal method,Dye-sensitized solar cells,Ternary nickel iron selenide
更新于2025-11-14 17:04:02
-
Full color carbon dots through surface engineering for constructing white light-emitting diodes
摘要: White light-emitting diodes (WLEDs) devices are replacing the filament lamp and they can provide a light close to the natural sunlight, which have thus drawn considerable attention in these recent years. It remains a scientific challenge to develop WLEDs using environmentally friendly, easy-to-process and cost-effective phosphors. Here we synthesized blue-, green- and red-carbon dots (denoted as B-, G- and R-CDs) by a facile solvothermal method with high dispersity both in aqueous and organic solvent. The quantum yield (QY) of the R-CDs achieved up to 24.7%. These CDs can be easily dissolved in polyvinylpyrrolidone (PVP) colloid, leading to the production of ultraviolet (UV)-excited LED devices to avoid the retinal damage caused by blue ray excitation. The fluorescence emission of the WLED has a wide band, covering the whole visible light region. Importantly, the influence of doping that gives rise to the change of emissive colors has been elucidated by X-ray photoelectron spectroscopy (XPS) combined with a computation method in order to provide a systematic controllable tuning on the functionalization of CDs. As such, WLEDs were demonstrated with color coordinates of (0.33, 0.33), a color temperature of 5612 K in the CIE chromaticity diagram with good anti-photobleaching and a color rendering index (CRI) of 89.
关键词: polyvinylpyrrolidone,White light-emitting diodes,solvothermal method,UV-excited LED devices,density functional theory,quantum yield,X-ray photoelectron spectroscopy,carbon dots
更新于2025-11-14 15:18:02
-
Facile synthesis of thin black TiO2 ? x nanosheets with enhanced lithium-storage capacity and visible light photocatalytic hydrogen production
摘要: In combination of a facile and scalable solvothermal method and solid-phase reduction reactions, a novel two-dimensional black TiO2 ? x nanosheet (TiO2 ? x NS) with high specific surface area of 108 m2 g?1 and nearly total solar spectral absorption capability have been successfully prepared. With careful characterizations, the novel TiO2 ? x NS showed enhanced electrochemical performance and visible-light photocatalytic activity than those of their white TiO2 nanosheet (TiO2 NS) precursors. The black TiO2 ? x NS electrode delivered a reversible specific capacity of 160 mA h g?1 even after cycling at 0.5 C (1 C = 190 mA h g?1) for 300 times, which was significantly higher than the corresponding white TiO2 NS electrode (104 mA h g?1). Meanwhile, the TiO2 ? x NS also exhibited enhanced ability of visible-light photocatalytic hydrogen production than that of the white TiO2 NS. It is expected that making white TiO2 NS into black ones is an effective way to design the photocatalysts with visible light response and the anodes with long lifetime and high rate performance in lithium ion batteries. The novel black TiO2 ? x NS could find potential applications in the field of environmental management and energy storage and conversion.
关键词: Solvothermal method,Photocatalysis,Black TiO2 ? x nanosheets,Anodes
更新于2025-09-23 15:23:52
-
Effects of raw materials on NaNbO <sub/>3</sub> nanocube synthesis via the solvothermal method
摘要: A nanocube is a single nanoscale crystal with a cubic shape. Raw materials are an important factor in determining the synthesis of nanocubes. In this study, we investigated various niobium compounds that serve as raw materials, each inducing different effects during nanocube synthesis. NaNbO3 nanocubes were synthesized using a two-step process. The first step in this process, synthesis of the raw materials, was followed by solvothermal synthesis of NaNbO3 nanocubes. The raw material for the first step was obtained by applying heat treatment to a precursor following Nb hydrolysis. The heat treatment was performed at temperatures of 300°C to 1000°C. Nb2O5 was obtained after heat treatment of its precursor, during which its crystalline system morphed into hexagonal, orthorhombic, and monoclinic systems with respective increases in temperature. For the second step, we obtained various NaNbO3 morphologies via the solvothermal method using water, methanol, or ethanol as a reaction medium. NaNbO3 nanocubes were formed by applying the solvothermal method to the synthesized precursor during heat treatment at 800°C. Solvothermal synthesis was performed with methanol as the reaction medium at 200°C, which resulted in the formation of NaNbO3 nanocubes.
关键词: Raw material,Solvothermal method,Nanocube,NaNbO3
更新于2025-09-23 15:23:52
-
Controlled Synthesis of Coral-Like CuO Dendrites with Enhanced Photocatalytic Performance
摘要: In this work, coral-like CuO dendrites were successfully synthesized by a solvothermal method in the mixed solvent of distilled water and ethanol with assistance of dodecyl trimethyl ammonium bromide (DTAB). The products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) analysis techniques, to investigate their structure and morphology. The coral-like CuO dendrites were about 1 μm in length, with many dendrites pointing to a common center. The influence of experimental conditions on morphology, such as volume ratio of water to ethanol, surfactant DTAB and molar ratio of Na2CO3 and Cu(CH3COO)2, was also discussed. Time-dependent experiment was carried out to explore the formation mechanism while a “particle-sheet-dendrite (PSD)” mechanism was proposed to explain the growth process. The as-prepared CuO dendrites were used to degrade methylene blue (MB) under visible light irradiation in the presence of H2O2, where over 98% of methylene blue (MB) was degraded in 1 h. Results from the study demonstrated that the as-prepared coral-like CuO dendrites exhibited enhanced photocatalytic performance and excellent stability and reusability.
关键词: Photocatalytic Performance,Solvothermal Method,Coral-Like CuO Dendrites
更新于2025-09-23 15:21:01
-
Facile synthesis of Cr doped hierarchical ZnO nano-structures for enhanced photovoltaic performance
摘要: Transition metal doped ZnO has been widely used in various research areas such as optoelectronics, chemical sensors, solar cells and photo catalysts. Herein, we fabricated Cr-doped ZnO nanospheres by a facile solvothermal treatment for enhanced photovoltaic performance. A systematic study of the structural and optical properties of Cr doped ZnO were investigated by scanning electron microscopy (SEM), X-ray diffraction technique (XRD), Ultra violet-Visible spectroscopy (UV–Vis) respectively. XRD patterns confirm that the samples have hexagonal (wurtzite) structure with no additional peaks, which suggests that Cr ions replaces the regular Zn sites in the ZnO crystal structure. Furthermore, doped ZnO nanospheres were employed in the hybrid solar cells in combination with P3HT and gave better current densities than their corresponding undoped counterparts. The increase in solar cell efficiency of doped ZnO nanospheres is solely due to the improvement in the charge separation efficiency in the 4% Cr doped ZnO nanospheres. Optoelectronic analysis of the Cr doped ZnO hybrid solar cell showed comparable results of JSC ?3.7 (mAcm?2), VOC 0.44 (V), Fill Factor 0.49 and Efficiency (?) 0.79 (%). The enhanced photovoltaic activity of the Cr doped hierarchical ZnO nanostructures provides an interesting grounds for the design and enhancement of the low cost, feasible synthesis of photovoltaic nanostructure materials.
关键词: Hybrid solar cell,Solvothermal method,Optical absorption,Photovoltaic device,Nanostructure
更新于2025-09-23 15:21:01
-
Fabrication and TCAD validation of ambient air-processed ZnO NRs/CH3NH3PbI3/spiro-OMeTAD solar cells
摘要: This paper reports the fabrication, characterization and simulation of hybrid perovskite solar cells (PSCs) in ambient condition. The proposed PSC structures use a CH3NH3PbI3 hybrid perovskite based active layer sandwiched between a ZnO nanorods (NRs) electron transport layer (ETL) and a spiro-OMeTAD (undoped and doped) hole transport layer (HTL). The ZnO NRs are grown using low-cost solvothermal process at relatively low temperature. The performance of fabricated PSCs are analyzed for both the undoped and doped (with TBP and LiTFSI) spiro-OMeTAD based HTLs. All the solar parameters namely, short circuit current density (JSC), open circuit voltage (VOC), fill factor (FF), power conversion efficiency (PCE) and external quantum efficiency (EQE) are calculated from experimentally measured current density versus voltage (J-V) and wavelength transient characteristics in ambient condition. The maximum PCE of 10.18% is obtained for the doped HTL whereas 9.51% for undoped HTL. The improved performance due to HTL doping is attributed to the enhanced charge transportation of the HTL. The experimental results obtained from the fabricated PSCs are also compared with the SetFosTM TCAD simulation data using drift-diffusion model. The simulated results are observed to be well matched to the experimental data.
关键词: Perovskite,ZnO nanorods,solvothermal method,power conversion efficiency,solar cells
更新于2025-09-23 15:19:57
-
Size effect-enhanced thermoelectric properties of nanoscale Cu2-xSe
摘要: As a promising thermoelectric material, copper selenides have attracted the interest of researchers owing to their low cost, abundance in earth, environmental friendliness, and low thermal conductivity. In this study, copper selenide (Cu2-xSe) powders with controllable sizes from nanoscale to mesoscale were obtained by a facile one-pot solvothermal method. After treatment with spark plasma sintering, the nanoscale Cu2-xSe pellets exhibited excellent thermoelectric properties such as sharply reduced thermal conductivity and enhanced Seebeck coefficient as well as a suppressed electrical conductivity. The figure of merit (ZT) of the nanoscale Cu2-xSe reached up to ~1.51 at 873 K, which is about 2.67 times higher than that of the meso-Cu2-xSe. This study confirms that thermoelectric properties can be enhanced by the size effect.
关键词: size effect,solvothermal method,thermoelectric property,Copper selenide,nanoscale
更新于2025-09-19 17:15:36