修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • An Electrical Analysis of a Metal-Interlayer-Semiconductor Structure on High-Quality Si <sub/> 1? <i>x</i> </sub> Ge <sub/><i>x</i> </sub> Films for Non-Alloyed Ohmic Contact

    摘要: In this paper, we have investigated the effect of a metal-interlayer-semiconductor (MIS) structure on intrinsic silicon-germanium (SiGe) film which is epitaxially grown by ultra-high vacuum chemical vapor deposition (UHV-CVD). Ultra-thin dielectric materials can alleviate Fermi-level pinning at the metal/Si1?xGex contact region by preventing penetration into the Si1?xGex of metal-induced gap states (MIGS) from the metal surface. The electrical properties which are the back-to-back current density and specific contact resistivity of the Ti/TiO2/Si1?xGex structure improve at the TiO2 interlayer thickness of 0.5 nm for all kinds of Si1?xGex film with various levels of germanium (Ge) concentration. The case of Si0.7Ge0.3 film, the specific contact resistivity of a Ti/TiO2(0.5 nm)/Si0.7Ge0.3 structure is reduced 80-fold compared to that of a Ti/Si0.7Ge0.3 structure. The effect of the MIS structure has been well demonstrated on Si1?xGex film, and as a result this structure is suggested as a novel source/drain (S/D) contact scheme for advanced Si1?xGex complementary metal-oxide-semiconductor (CMOS) technology.

    关键词: Epitaxial Growth,Metal-Interlayer-Semiconductor,Source/Drain Contact,Silicon-Germanium,Fermi-Level Pinning,Specific Contact Resistivity

    更新于2025-09-23 15:22:29

  • [IEEE 2018 IEEE Symposium on VLSI Technology - Honolulu, HI, USA (2018.6.18-2018.6.22)] 2018 IEEE Symposium on VLSI Technology - Metal/P-type GeSn Contacts with Specific Contact Resistivity down to 4.4×10 <sup>?10</sup> Ω-cm <sup>2</sup>

    摘要: Ga and Sn surface-segregated p+-GeSn (Seg. p+-GeSn) was grown by molecular beam epitaxy (MBE) to achieve an average active Ga doping concentration of 3.4×1020 cm-3 and surface Sn composition of more than 8%. This enables the realization of record-low specific contact resistivity ρc down to 4.4×10-10 ?-cm2. The average ρc extracted from 14 sets of Ti/Seg. p+-GeSn Nano-TLM test structures, a collection of more than 90 devices is 6.5×10-10 ?-cm2. This is also the lowest ρc for non-laser-annealed contacts. Ti contacts to p+-GeSn films with and without Ga and Sn surface segregation were fabricated. It is shown that the segregation of Ga and Sn at the Ti/p+-GeSn interface leads to 50% reduction in ρc as compared with a sample without segregation.

    关键词: Ga and Sn surface-segregated p+-GeSn,molecular beam epitaxy,specific contact resistivity,Nano-TLM test structures

    更新于2025-09-23 15:21:21