- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Trace analysis of radioisotopes by laser spectroscopy and mass spectrometry
摘要: Trace analysis (at fg-level) of radioisotopes requires a considerable push in analytical technology. Among most sensitive are a Time-Resolved Laser-Induced Fluorescence (TRLIF) and Chemiluminescence (TRLIC) methods for detection of elemental compositions and valence states and a Resonance Ionisation Spectroscopy (RIS) in combination with mass spectrometry for isotope composition determination. The radioisotopes of interest in environmental radiochemistry and planetary science and their analysis using TRLIF/TRLIC/RIS are discussed. The aspects of the development of the new technology implementing these methods are also described.
关键词: Mass spectrometry,RIMS,TRLIC,TRLIF,Trace analysis,RIS,Laser spectroscopy
更新于2025-09-16 10:30:52
-
Influence of Silicon Layers on the Growth of ITO and AZO in Silicon Heterojunction Solar Cells
摘要: In this article, we report on the properties of indium tin oxide (ITO) deposited on thin-film silicon layers designed for the application as carrier selective contacts for silicon heterojunction (SHJ) solar cells. We find that ITO deposited on hydrogenated nanocrystalline silicon (nc-Si:H) layers presents a significant drop on electron mobility μe in comparison to layers deposited on hydrogenated amorphous silicon films (a-Si:H). The nc-Si:H layers are not only found to exhibit a larger crystallinity than a-Si:H, but are also characterized by a considerably increased surface rms roughness. As we can see from transmission electron microscopy (TEM), this promotes the growth of smaller and fractured features in the initial stages of ITO growth. Furthermore, secondary ion mass spectrometry profiles show different penetration depths of hydrogen from the thin film silicon layers into the ITO, which might both influence ITO and device passivation properties. Comparing ITO to aluminum doped zinc oxide (AZO), we find that AZO can actually exhibit superior properties on nc-Si:H layers. We assess the impact of the modified ITO Rsh on the series resistance Rs of SHJ solar cells with >23% efficiency for optimized devices. This behavior should be considered when designing solar cells with amorphous or nanocrystalline layers as carrier selective contacts.
关键词: secondary ion mass spectrometry (SIMS),indium tin oxide (ITO),series resistance,Aluminum doped zinc oxide (AZO),transparent conductive oxide (TCO),transmission electron microscopy (TEM),silicon heterojunction (SHJ)
更新于2025-09-16 10:30:52
-
Laser ionization ion mobility spectrometric interrogation of acoustically levitated droplets
摘要: Acoustically levitated droplets have been suggested as compartmentalized, yet wall-less microreactors for high-throughput reaction optimization purposes. The absence of walls is envisioned to simplify up-scaling of the optimized reaction conditions found in the microliter volumes. A consequent pursuance of high-throughput chemistry calls for a fast, robust and sensitive analysis suited for online interrogation. For reaction optimization, targeted analysis with relatively low sensitivity suffices, while a fast, robust and automated sampling is paramount. To follow this approach, in this contribution, a direct coupling of levitated droplets to a homebuilt ion mobility spectrometer (IMS) is presented. The sampling, transfer to the gas phase, as well as the ionization are all performed by a single exposure of the sampling volume to the resonant output of a mid-IR laser. Once formed, the nascent spatially and temporally evolving analyte ion cloud needs to be guided out of the acoustically confined trap into the inlet of the ion mobility spectrometer. Since the IMS is operated at ambient pressure, no fluid dynamic along a pressure gradient can be employed. Instead, the transfer is achieved by the electrostatic potential gradient inside a dual ring electrode ion optics, guiding the analyte ion cloud into the first stage of the IMS linear drift tube accelerator. The design of the appropriate atmospheric pressure ion optics is based on the original vacuum ion optics design of Wiley and McLaren. The obtained experimental results nicely coincide with ion trajectory calculations based on a collisional model.
关键词: Ion mobility spectrometry,Acoustic levitation,Ambient pressure laser ionization,Ion optics
更新于2025-09-16 10:30:52
-
Detection of extended-spectrum β-lactamases producing Enterobacteriaceae using a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry based MBT STAR-BL software module with β-lactamase inhibition assay depends on the bacterial strains
摘要: Rapid and sensitive detection of extended-spectrum β-lactamases (ESBLs) is essential for infection control and antimicrobial treatment. Recently, a matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS)-based MBT STAR-BL software module has been used for detecting β-lactamase activity; however, this system cannot differentiate ESBL producing bacteria from other third-generation cephalosporin-resistant strains. In this study, we utilized a MALDI-TOF MS-based MBT STAR-BL method to identify ESBL activity with β-lactamase inhibitors. A cefotaxime (CTX) hydrolysis assay, β-lactamase inhibition, clavulanic acid (CVA), and sulbactam (SBT) were used for detecting ESBL producers with the MBT STAR-BL software module. This software module automatically calculated the logRQ values in each assay. logRQ is the logarithm of the ratio of the summed hydrolyzed peak intensities to the summed non-hydrolyzed peak intensities and measured the efficiency of antibiotic hydrolysis. We divided the logRQ level of the β-lactamase inhibition assay by the logRQ value in the CTX hydrolysis assay, and we used this logRQ ratio as a measure of β-lactamase inhibition efficiency. We assessed the logRQ ratio calculated by this novel method for detecting ESBL producers in 132 Enterobacteriaceae. We performed the MALDI-TOF MS-based MBT STAR-BL approach with β-lactamase inhibitors for detecting ESBL producers and showed that the results of the inhibition assay with β-lactamase inhibitors depended on types of bacterial species. Furthermore, we improved elapsed times and accuracy in MBT STAR-BL methods by using proper β-lactamase inhibitors against specific bacterial strains to compare with the conventional standard lab method. The results suggest that the target bacterial species and β-lactamase inhibitors used were important for the utility of the MALDI-TOF MS-based MBT STAR-BL software module.
关键词: MBT STAR-BL,Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry,β-Lactamase inhibition assay,Extended-spectrum β-lactamase
更新于2025-09-16 10:30:52
-
Matrix-assisted laser desorption ionization-time of flight mass spectrometry can be used to identify Helicobacter cinaedi
摘要: We examined the applicability of Matrix-assisted laser desorption ionization-time of flight mass spectrometry using 54 Helicobacter cinaedi isolates from humans. In all 54 isolates, MALDI-TOF MS detected H. cinaedi as the best match organism. Our findings suggest that MALDI TOF-MS can be used effectively to identify H. cinaedi.
关键词: Helicobacter cinaedi,Matrix-assisted laser desorption ionization-time of flight mass spectrometry,Identification
更新于2025-09-16 10:30:52
-
Mass spectrometry imaging (MSI) of fresh bones using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI)
摘要: We report an effective strategy for direct analysis and two-dimensional (2D) infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) mass spectrometry imaging (MSI) of mouse bones that underwent no chemical treatments prior to analysis. To unravel the chemistry in bones under near-physiological conditions, we cut a flash-frozen bone in half longitudinally, placed it in a mold facing flat side down, and poured Plaster of Paris on top of and around the bone. After Plaster of Paris had set, the bone with embedding material was removed from the mold, and placed on the IR-MALDESI imaging stage. Plaster of Paris acted as a fixture to keep every spot on the sample surface the same distance away from the laser focus. To demonstrate the feasibility of IR-MALDESI MSI for analyses of unmodified bones, we imaged bones derived from healthy and stroke-affected mice and generated ion heatmaps showing the spatial distribution of putatively annotated features.
关键词: mouse bones,IR-MALDESI,direct analysis,Plaster of Paris,Mass spectrometry imaging
更新于2025-09-16 10:30:52
-
Exfoliated MXene as a mediator for efficient laser desorption/ionization mass spectrometry analysis of various analytes
摘要: The exfoliated MXene (e-MXene) is systematically investigated as a mediator for laser desorption/ionization time-of-flight mass spectrometry (LDI-MS) analysis. Whereas un-exfoliated MXene has no activity for LDI-MS analysis, the e-MXene presents a high resolution, salt-tolerance and efficiency for LDI-MS analysis of various small molecules regardless of their polarity, aromaticity and molecular weight owing to its physicochemical properties such as high laser energy absorption, electrical conductivity and photothermal conversion. Based on our findings, it is clearly confirmed that e-MXene is a promising material for the development of an efficient platform for LDI-MS analysis of small molecules.
关键词: Metabolite,MXene,Mass spectrometry,Laser desorption ionization,Exfoliation
更新于2025-09-16 10:30:52
-
Three-Dimensional Imaging of Selenium and Chlorine Distributions in Highly Efficient Selenium-Graded Cadmium Telluride Solar Cells
摘要: Thin-film solar modules based on cadmium telluride (CdTe) technology currently produce the world’s lowest cost solar electricity. However, the best CdTe modules now contain a cadmium selenium telluride (CST) alloy at the front of the absorber layer. Despite this, research characterizing the behavior of selenium in alloyed CdTe devices is currently very limited. Here we employ advanced secondary ion mass spectrometry measurements to map the three-dimensional distribution of selenium in a graded CST/CdTe device for the first time. We find significant interdiffusion of selenium between the CST and CdTe layers in the cell, primarily out of the CST grain boundaries and up into the CdTe grain boundaries and grain fringes above. This results in significant lateral variations in selenium concentrations across grains and hence also lateral fields, which we estimate using the measured selenium concentrations.
关键词: secondary ion mass spectrometry (SIMS),Alloying,CdTe,solar energy
更新于2025-09-16 10:30:52
-
Bacterial identification by lipid profiling using liquid atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry
摘要: Background: In recent years, mass spectrometry (MS) has been applied to clinical microbial biotyping, exploiting the speed of matrix-assisted laser desorption/ionization (MALDI) in recording microbe-specific MS profiles. More recently, liquid atmospheric pressure (AP) MALDI has been shown to produce extremely stable ion flux from homogenous samples and ‘electrospray ionization (ESI)-like’ multiply charged ions for larger biomolecules, whilst maintaining the benefits of traditional MALDI including high tolerance to contaminants, low analyte consumption and rapid analysis. These and other advantages of liquid AP-MALDI MS have been explored in this study to investigate its potential in microbial biotyping. Methods: Genetically diverse bacterial strains were analyzed using liquid AP-MALDI MS, including clinically relevant species such as Escherichia coli, Staphylococcus aureus and Klebsiella pneumoniae. Bacterial cultures were subjected to a simple and fast extraction protocol using ethanol and formic acid. Extracts were spotted with a liquid support matrix (LSM) and analyzed using a Synapt G2-Si mass spectrometer with an in-house built AP-MALDI source. Results: Each species produces a unique lipid profile in the m/z range of 400–1100, allowing species discrimination. Traditional (solid) MALDI MS produced spectra containing a high abundance of matrix-related clusters and an absence of lipid peaks. The MS profiles of the bacterial species tested form distinct clusters using principle component analysis (PCA) with a classification accuracy of 98.63% using a PCA-based prediction model. Conclusions: Liquid AP-MALDI MS profiles can be sufficient to distinguish clinically relevant bacterial pathogens and other bacteria, based on their unique lipid profiles.
关键词: matrix-assisted laser desorption/ionization,mass spectrometry,bacteria,profiling,speciation,MALDI,biotyping,lipids
更新于2025-09-16 10:30:52
-
Laser cleavable probes for <i>in situ</i> multiplexed glycan detection by single cell mass spectrometry
摘要: Glycans binding on the cell surface through glycosylation play a key role in controlling various cellular processes, and glycan analysis at a single-cell level is necessary to study cellular heterogeneity and diagnose diseases in the early stage. Herein, we synthesized a series of laser cleavable probes, which could sensitively detect glycans on single cells and tissues by laser desorption ionization mass spectrometry (LDI-MS). This multiplexed and quantitative glycan detection was applied to evaluate the alterations of four types of glycans on breast cancer cells and drug-resistant cancer cells at a single-cell level, indicating that drug resistance may be related to the upregulation of glycan with a b-D-galactoside (Galb) group and Neu5Aca2-6Gal(NAc)-R. Moreover, the glycan spatial distribution in cancerous and paracancerous human tissues was also demonstrated by MS imaging, showing that glycans are overexpressed in cancerous tissues. Therefore, this single-cell MS approach exhibits promise for application in studying glycan functions which are essential for clinical biomarker discovery and diagnosis of related diseases.
关键词: mass spectrometry,breast cancer,drug resistance,laser cleavable probes,single-cell analysis,glycans
更新于2025-09-16 10:30:52