修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2151 条数据
?? 中文(中国)
  • Giant-Shell CdSe/CdS Nanocrystals: Exciton Coupling to Shell Phonons Investigated by Resonant Raman Spectroscopy

    摘要: The interaction between excitons and phonons in semiconductor nanocrystals plays a crucial role in the exciton energy spectrum and dynamics, and thus in their optical properties. We investigate the exciton-phonon coupling in giant-shell CdSe/CdS core-shell nanocrystals via resonant Raman spectroscopy. The Huang-Rhys parameter is evaluated by the intensity ratio of the longitudinal-optical (LO) phonon of CdS with its first multiscattering (2LO) replica. We used four different excitation wavelengths in the range from the onset of the CdS shell absorption to well above the CdS shell band edge to get insight into resonance effects of the CdS LO phonon with high energy excitonic transitions. The isotropic spherical giant-shell nanocrystals show consistently stronger exciton-phonon coupling as compared to the anisotropic rod-shaped dot-in-rod (DiR) architecture, and the 2LO/LO intensity ratio decreases for excitation wavelengths approaching the CdS band edge. The strong exciton-phonon coupling in the spherical giant-shell nanocrystals can be related to the delocalization of the electronic wave functions. Furthermore, we observe the radial breathing modes of the GS nanocrystals and their overtones by ultra-low frequency Raman spectroscopy with nonresonant excitation, using laser energies well below the band gap of the heteronanocrystals, and highlight the differences between higher order optical and acoustic phonon modes.

    关键词: Giant-shell nanocrystals,acoustic phonons,Dot-in-rods,Raman spectroscopy,Core-shell heterostructures,exciton-phonon coupling

    更新于2025-09-23 15:23:52

  • Probing Lithium Carbonate Formation in Trace-O <sub/>2</sub> -Assisted Aprotic Li-CO <sub/>2</sub> Batteries Using in Situ Surface-Enhanced Raman Spectroscopy

    摘要: A trace O2-assisted aprotic Li-CO2 battery represents a promising approach for CO2 recycling. However, cathode passivation and large overpotential are frequently observed for current Li-CO2 batteries because of the insolubility and non-conductivity of the discharge product of lithium carbonate (Li2CO3). Toward maximizing the energy capabilities of the Li-CO2 electrochemistry, it is crucially important to have a fundamental understanding of the Li2CO3 formation mechanism in Li-CO2 batteries. In this report, the discharge reaction of a trace O2-assisted Li-CO2 battery has been interrogated with in-situ surface enhanced Raman spectroscopy (SERS). It was found that in high donor number (DN) solvents Li2CO3 formation proceeds primarily via an 'electrochemical solution route' with peroxodicarbonate (C2O6^2-) as the key intermediate; while in low DN solvents Li2CO3 forms via a chemical reaction of Li2O2 and CO2 on the cathode surface, namely a 'chemical surface route'. It is notable that during discharge the trace O2 acts as a 'pseudo-catalyst' to activate CO2 in high DN solvents, but not in low-DN solvents. The mechanistic study presented here will assist to tailor-design better electrolyte systems and enable more energetic electrochemistry operating far away from the poison of Li2CO3.

    关键词: surface enhanced Raman spectroscopy,lithium carbonate,O2-assisted aprotic Li-CO2 battery

    更新于2025-09-23 15:23:52

  • Spectrally Resolved Ultrafast Exciton Transfer in Mixed Perovskite Quantum Wells

    摘要: Solution-processed perovskite quantum wells have been used to fabricate increasingly efficient and stable optoelectronic devices. Little is known about the dynamics of photogenerated excitons in perovskite quantum wells within the first few hundred femtoseconds – a crucial timescale on which energy and charge transfer processes may compete. Here we use ultrafast transient absorption and two-dimensional electronic spectroscopy to clarify the movement of excitons and charges in reduced-dimensional perovskite solids. We report excitonic funneling from strongly to weakly confined perovskite quantum wells within 150 fs, facilitated by strong spectral overlap and orientational alignment among neighboring wells. This energy transfer happens on timescales orders of magnitude faster than charge transfer, which we find to occur instead over 10 - 100s of picoseconds. Simulations of both F?rster-type interwell exciton transfer and free carrier charge transfer are in agreement with these experimental findings, with theoretical exciton transfer calculated to occur in 100s of fs.

    关键词: energy transfer,Carrier,metal halide perovskite,two-dimensional electronic spectroscopy,layered perovskite,dynamics

    更新于2025-09-23 15:23:52

  • Measurement of Forces between Supported Cationic Bilayers by Colloid Probe Atomic Force Microscopy: Electrolyte Concentration and Composition

    摘要: The interactions between supported cationic surfactant bilayers were measured by colloidal probe atomic force spectroscopy, and the effect of different halide salts was investigated. Di(alkylisopropylester)dimethylammonium methylsulfate (DIPEDMAMS) bilayers were fabricated by the vesicle fusion technique on muscovite mica. The interactions between the bilayers were measured in increasing concentrations of NaCl, NaBr, NaI, and CaCl2. In NaCl, the bilayer interactions were repulsive at all concentrations investigated, and the Debye length and surface potential were observed to decrease with increasing concentration. The interactions were found to follow the electrical double layer (EDL) component of DLVO theory well. However, van der Waals forces were not detected; instead, a strong hydration repulsion was observed at short separations. CaCl2 had a similar effect on the interactions as NaCl. NaBr and NaI were observed to be more efficient at decreasing surface potential than the chloride salts, with the efficacy increasing with the ionic radius.

    关键词: supported bilayers,DLVO theory,Debye length,surface potential,halide salts,colloidal probe atomic force spectroscopy

    更新于2025-09-23 15:23:52

  • Contactless Optical Characterization of Carrier Dynamics in Free-Standing InAs-InAlAs Core-Shell Nanowires on Silicon

    摘要: Contactless time-resolved pump-probe and external quantum efficiency measurements were performed on epitaxially grown free-standing wurtzite indium arsenide/indium aluminum arsenide (InAs-InAlAs) core-shell nanowires on Si (111) substrate from 77K to 293K. The first independent investigation of Shockley-Read-Hall, radiative and Auger recombination in InAs-based NWs is presented. Although the Shockley-Read Hall recombination coefficient was found to be at least two orders of magnitude larger than the average experimental values of other reported InAs materials, the Auger recombination coefficient was reported to be ten-fold smaller. The very low Auger and high radiative rates result in an estimated peak internal quantum efficiency of the core-shell nanowires as high as 22% at 77K, making these nanowires of potential interest for high efficiency mid-infrared emitters. A greater than two-fold enhancement in minority carrier lifetime was observed from capping nanowires with a thin InAlAs shell due to passivation of surface defects.

    关键词: Auger recombination rate,radiative,Shockley-Read-Hall,Pump-probe spectroscopy,core-shell nanowires,surface/interface recombination velocity,minority carrier lifetime

    更新于2025-09-23 15:23:52

  • Operando observation of chemical transformations of iridium oxide during photoelectrochemical water oxidation

    摘要: Iridium oxide is one of the few catalysts capable of catalyzing the oxygen evolution reaction (OER) in both acidic and basic conditions. Understanding the mechanism of IrOx under realistic photoelectrochemical conditions is important for the development of integrated water splitting systems. Herein, we have developed a highly efficient OER photoanode in pH 1 aqueous solutions based on a sputtered IrOx film and a p+n-Si light absorber, interfaced with sputtered Au layer. Operando high energy resolution fluorescence detection X-ray absorption spectroscopy (HERFD XAS) was employed to monitor the oxidation state changes of IrOx during both electrochemical and photoelectrochemical (PEC) water oxidation reactions in pH 1 aqueous solutions. We observed a gradual increase of the average oxidation state of Ir with increasing anodic potential in the pre-catalytic region, followed by a reduction of Ir under O2 evolution conditions. Consistent results were obtained on dark anodes and illuminated photoanodes. However, when the thickness of IrO2 was increased to 2 and 3 nm, the spectral changes became much less pronounced and the reduction of Ir oxidation state after the OER onset was not observed. This is due to the lower surface to bulk ratio, where lattice oxygen sites in the bulk are not accessible for the formation of hydroxide. More generally, the operando method developed here can be extended to other materials, thereby providing a powerful tool for mechanism discovery and an enabling capability for catalyst design.

    关键词: oxygen evolution reaction (OER),electrochemical and photoelectrochemical (PEC),high energy resolution fluorescence detection X-ray absorption spectroscopy (HERFD XAS),iridium oxide,Operando method

    更新于2025-09-23 15:23:52

  • Domino Reaction for the Sustainable Functionalization of Few-Layer Graphene

    摘要: The mechanism for the functionalization of graphene layers with pyrrole compounds was investigated. Liquid 1,2,5-trimethylpyrrole (TMP) was heated in air in the presence of a high surface area nanosized graphite (HSAG), at temperatures between 80 °C and 180 °C. After the thermal treatments solid and liquid samples, separated by centrifugation, were analysed by means of Raman, Fourier Transform Infrared (FT-IR) spectroscopy, X-Rays Photoelectron Spectroscopy (XPS) and 1H-Nuclear Magnetic Resonance (1H NMR) spectroscopy and High Resolution Transmission Electron Microscopy (HRTEM). FT-IR spectra were interpreted with the support of Density Functional Theory (DFT) quantum chemical modelling. Raman findings suggested that the bulk structure of HSAG remained substantially unaltered, without intercalation products. FT-IR and XPS spectra showed the presence of oxidized TMP derivatives on the solid adducts, in a much larger amount than in the liquid. For thermal treatments at T ≥ 150 °C, IR spectral features revealed not only the presence of oxidized products but also the reaction of intra-annular double bond of TMP with HSAG. XPS spectroscopy showed the increase of the ratio between C(sp2)N bonds involved in the aromatic system and C(sp3)N bonds, resulting from reaction of the pyrrole moiety, observed while increasing the temperature from 130 °C to 180 °C. All these findings, supported by modeling, led to hypothesize a cascade reaction involving a carbocatalyzed oxidation of the pyrrole compound followed by Diels-Alder cycloaddition. Graphene layers play a twofold role: at the early stages of the reaction, they behave as a catalyst for the oxidation of TMP and then they become the substrate for the cycloaddition reaction. Such sustainable functionalization, which does not produce by-products, allows us to use the pyrrole compounds for decorating sp2 carbon allotropes without altering their bulk structure and smooths the path for their wider application.

    关键词: infrared spectroscopy,Density Functional Theory,pyrrole compounds,quantum chemical modelling,graphene layers,Functional Groups

    更新于2025-09-23 15:23:52

  • Modular Ceramic-Polymeric Device for Analysis of Selected Elements in Liquid Using Microplasma

    摘要: Miniaturization of devices for analysis of chemical composition is being still developed. In this article we present a portable device with a microplasma excitation source. The microdischarge is ignited inside a ceramic structure between a solid anode and a liquid cathode. As a result of cathode sputtering of the solution, it is possible to determine its chemical specimens by analysis of emission spectra of the microdischarge. We fabricated cathodes with a microfluidic compartment and two types of anodes. Devices were tested experimentally. Spectroscopic properties of the microdischarge and its analytical performance depended on the used ceramic structure, the surface area of the cathode aperture and the flow rate of the solution.

    关键词: optical emission spectroscopy,microplasma,LTCC

    更新于2025-09-23 15:23:52

  • Synthesis of Fluorescent Ag Nanoclusters for Sensing and Imaging Applications

    摘要: Metal nanoparticles have attracted more and more attention in the last years due to their unique chemical and physical properties which are very different from the metal bulk material. In particular, when the size of nanoparticles decreases below two nm, nanoparticles can be described as nanoclusters (NCs), and they present peculiar optical properties. The excited electrons in addition to specific absorption bands show also a bright luminescence related to the quantum size effect which produce discrete energy levels. Optical properties (absorption and fluorescence) of these NCs are widely used in many different applications in science and engineering, such as chemical sensors, fluorescent probes for bio imaging or in environmental issues. In the present study, we report on the synthesis of silver nanoclusters (AgNCs) in aqueous phase using silver nitrate as precursor salt and L-Glutathione (GSH) as stabilizer. AgNCs were characterized using absorption and fluorescence spectroscopy, and transmission electron microscopy (TEM). The strong absorption and luminescence shown by these NCs are very promising for a possible exploitation both as label for bioimaging and for optical sensors for heavy metal ions.

    关键词: luminescence,spectroscopy,GSH-Ag Nanoclusters,optical absorption

    更新于2025-09-23 15:23:52

  • High-Performance Chromatographic Characterization of Surface Chemical Heterogeneities of Fluorescent Organic–Inorganic Hybrid Core–Shell Silica Nanoparticles

    摘要: In contrast to small-molar-mass compounds, detailed structural investigations of inorganic core–organic ligand shell hybrid nanoparticles remain challenging. The assessment of batch-reaction-induced heterogeneities of surface chemical properties and their correlation with particle size has been a particularly long-standing issue. Applying a combination of high-performance liquid chromatography (HPLC) and gel permeation chromatography (GPC) to ultra-small (<10 nm diameter) poly(ethylene glycol)-coated (PEGylated) fluorescent core–shell silica nanoparticles, we elucidate here previously unknown surface heterogeneities resulting from varying dye conjugation to nanoparticle silica cores and surfaces. Heterogeneities are predominantly governed by dye charge, as corroborated by molecular dynamics simulations. We demonstrate that this insight enables the development of synthesis protocols to achieve PEGylated and targeting ligand-functionalized PEGylated silica nanoparticles with dramatically improved surface chemical homogeneity, as evidenced by single-peak HPLC chromatograms. Because surface chemical properties are key to all nanoparticle interactions, we expect these methods and fundamental insights to become relevant to a number of systems for applications, including bioimaging and nanomedicine.

    关键词: surface chemistry heterogeneity,high-performance liquid chromatography,nanoparticle characterization,nanoparticle surface functionalization,fluorescence correlation spectroscopy,molecular dynamics,nanoparticle heterogeneity

    更新于2025-09-23 15:23:52