- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
[IEEE 2018 IEEE International Conference on Computational Electromagnetics (ICCEM) - Chengdu, China (2018.3.26-2018.3.28)] 2018 IEEE International Conference on Computational Electromagnetics (ICCEM) - A Vector Parabolic Equation Method for Propagation Predictions Over 3-D Irregular Terrains
摘要: In this paper, a vector parabolic equation (PE) method based on perfectly absorbing thin screen is applied to predicting the propagation of electromagnetic waves over three-dimensional (3-D) irregular terrains. Under the assumption of forward propagation, the 3-D PE is obtained and the split-step Fourier transform algorithm is adopted to march the potentials from one aperture plane to the next. Terrains are equivalent to a series of perfectly absorbing thin screens arranged along the direction of propagation and the Tukey window is used to attenuate the fields smoothly at the upper boundary without reflections. Finally, in order to validate the proposed method, several numerical simulations are made and the results are compared with the two-dimensional PE method. As a result, good agreements are observed and the proposed method was confirmed to take the effect of lateral terrains into account.
关键词: split-step Fourier transform,vector parabolic equation,propagation prediction,irregular terrain
更新于2025-09-23 15:21:21
-
[IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Direct Observation of Intracavity Pulse Dynamics in All-Normal Dispersion All-Fiber Oscillator
摘要: Ultrafast science and technology depend strongly on the development of novel ultrafast sources, thus good understanding of nonlinear phenomena in such systems is of essence. In this paper, we present the experimental observation and theoretical analysis of various pulse dynamics in all-normal dispersion cavity producing dissipative soliton pulses. We report the results of an extensive study regarding the Stimulated Raman Scattering (SRS) process, which creates a main upper limitation for the pulse energy achievable from all-normal dispersion fiber oscillators. We report the measurements of real-time, single shot spectra registered using Dispersive Fourier Transform (DFT) technique together with measured averaged spectral phase of the pulses generated from an all-PM-fiber oscillator mode-locked with Nonlinear Optical Loop Mirror (NOLM). It is found that NOLM parameters directly influenced the pulse stability and dynamics. The Yb-doped fiber was used as an active medium and Dissipative Soliton (DS) pulses centered at 1030 nm were generated together with Stokes radiation shifted by 440 cm-1 (centered approximately at 1078 nm) produced in SRS process. The light generated in SRS process was suppressed from round-trip to round-trip by a narrow pass-band spectral filter centered at 1030 nm placed inside the laser cavity. We present the broad experimental study of ultrashort pulse dynamics with strong presence of SRS process. Spectral intensity correlation maps were calculated to describe how the SRS process disturbs the ultrashort pulse during propagation in the cavity (Fig. 1). The intensities of longer wavelengths (1040 – 1050 nm) in the pulse spectrum were destabilized due to the SRS process. In normal dispersion fiber Stokes SRS components have higher group velocity than the pulse spectral components. For positively chirped pulse SRS affects only the leading edge of the pulse which is manifested as negative correlation (Fig. 1(c)). The phenomena of repetitive partial dissipative soliton explosions and bistability of the pulse operation in an all-PM-fiber all-normal dispersion oscillator cavity were investigated as well. The clear signature of bistable operation was the hysteresis of the laser pulse power versus input pump power. Furthermore, we registered significant differences between the measured pulses spectral phases for each case. Another set of measurements was performed to analyze the pulse self-starting dynamics. We present the experimental study and numerical simulations of DS pulse dynamics in an all-normal dispersion all-fiber cavity. The numerical simulations were performed using the standard split-step Fourier-transform method employing the multi-vibrational model of SRS. DS lasers are important pulse sources and an effective platform to investigate the pulse dynamics and nonlinear processes inside the all-fiber cavities.
关键词: spectral intensity correlation maps,Yb-doped fiber,dissipative soliton pulses,Dispersive Fourier Transform,split-step Fourier-transform method,Nonlinear Optical Loop Mirror,Stimulated Raman Scattering,ultrafast science
更新于2025-09-12 10:27:22