- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
A method for the statistical evaluation of the fluorescence intensity of single blinking quantum dots using a confocal fluorescence microscope
摘要: The evaluation of the fluorescence intensity of single quantum dots (QDs) using a confocal fluorescence microscope can provide an alternative approach for estimating the effects of environmental changes or surface modifications on the fluorescence intensity of single QDs. In the case of blinking QDs, irregular blinking would significantly influence the intensity evaluation results that are based on the analysis of one or a few single QDs. In this regard, statistical intensity evaluations based on a large number of single QDs would be helpful to estimate an approximate intensity value of single QDs with reduced effects of blinking on the evaluation results. Herein, we developed a convenient method to statistically evaluate the fluorescence intensity of a large number of single blinking QDs using Gaussian distribution. Based on the intensity analysis of thousands of single QDs, the fluorescence intensity of the single QDs evaluated using a confocal fluorescence microscope was approximately 4090 with little data fluctuation induced by blinking.
关键词: confocal fluorescence microscope,statistical evaluation,fluorescence intensity,single blinking quantum dots,Gaussian distribution
更新于2025-09-23 15:19:57
-
Technical note: Evaluation of the simultaneous measurements of mesospheric OH, HO<sub>2</sub>, and O<sub>3</sub> under a photochemical equilibrium assumption – a statistical approach
摘要: This Technical Note presents a statistical approach to evaluating simultaneous measurements of several atmospheric components under the assumption of photochemical equilibrium. We consider simultaneous measurements of OH, HO2, and O3 at the altitudes of the mesosphere as a specific example and their daytime photochemical equilibrium as an evaluating relationship. A simplified algebraic equation relating local concentrations of these components in the 50–100 km altitude range has been derived. The parameters of the equation are temperature, neutral density, local zenith angle, and the rates of eight reactions. We have performed a one-year simulation of the mesosphere and lower thermosphere using a 3-D chemical-transport model. The simulation shows that the discrepancy between the calculated evolution of the components and the equilibrium value given by the equation does not exceed 3–4 % in the full range of altitudes independent of season or latitude. We have developed a statistical Bayesian evaluation technique for simultaneous measurements of OH, HO2, and O3 based on the equilibrium equation taking into account the measurement error. The first results of the application of the technique to MLS/Aura data (Microwave Limb Sounder) are presented in this Technical Note. It has been found that the satellite data of the HO2 distribution regularly demonstrate lower altitudes of this component’s mesospheric maximum. This has also been confirmed by model HO2 distributions and comparison with offline retrieval of HO2 from the daily zonal means MLS radiance.
关键词: photochemical equilibrium,mesosphere,MLS/Aura,O3,OH,statistical evaluation,HO2
更新于2025-09-09 09:28:46