- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
[IEEE 2019 Second International Workshop on Mobile Terahertz Systems (IWMTS) - Bad Neuenahr, Germany (2019.7.1-2019.7.3)] 2019 Second International Workshop on Mobile Terahertz Systems (IWMTS) - Mutually Coupled Dielectric Resonators for On-Chip Antenna Efficiency Enhancement
摘要: The design and real-time hardware-in-the-loop implementation of a hybrid synchrophasors and GOOSE-based automatic synchronization algorithm are presented in this paper. Automatic synchronization is performed by utilizing the synchrophasor measurements from two commercial phasor measurement units (PMUs), while the coordinated control commands to automatic voltage regulator and/or turbine governor control and trip command to the circuit breaker are issued using IEC 61850-8-1 GOOSE messages. The algorithm is deployed inside the PMU using the protection logic equations, and direct communication between the PMUs is established to minimize the communication latencies. In addition, the algorithm is tested using a standard protection relay test-set, and automatic test sequences are executed to validate its performance. It is concluded that the hybrid synchrophasor and GOOSE-based automatic synchronization scheme ensures minimum communication latencies, reduces equipment cost, facilitates interoperability, and performs automatic reconnection adequately.
关键词: synchronization,smart grid,power system protection,real-time control,reconnection,protective relays,synchrophasors,Phasor measurement unit (PMU)
更新于2025-09-19 17:13:59
-
[IEEE 2019 IEEE International Electron Devices Meeting (IEDM) - San Francisco, CA, USA (2019.12.7-2019.12.11)] 2019 IEEE International Electron Devices Meeting (IEDM) - Self-organized Pairs of Ge Double Quantum Dots with Tunable Sizes and Spacings Enable Room-Temperature Operation of Qubit and Single-Electron Devices
摘要: The design and real-time hardware-in-the-loop implementation of a hybrid synchrophasors and GOOSE-based automatic synchronization algorithm are presented in this paper. Automatic synchronization is performed by utilizing the synchrophasor measurements from two commercial phasor measurement units (PMUs), while the coordinated control commands to automatic voltage regulator and/or turbine governor control and trip command to the circuit breaker are issued using IEC 61850-8-1 GOOSE messages. The algorithm is deployed inside the PMU using the protection logic equations, and direct communication between the PMUs is established to minimize the communication latencies. In addition, the algorithm is tested using a standard protection relay test-set, and automatic test sequences are executed to validate its performance. It is concluded that the hybrid synchrophasor and GOOSE-based automatic synchronization scheme ensures minimum communication latencies, reduces equipment cost, facilitates interoperability, and performs automatic reconnection adequately.
关键词: synchrophasors,synchronization,protective relays,Phasor measurement unit (PMU),smart grid,real-time control,reconnection,power system protection
更新于2025-09-19 17:13:59
-
[IEEE OCEANS 2019 MTS/IEEE SEATTLE - Seattle, WA, USA (2019.10.27-2019.10.31)] OCEANS 2019 MTS/IEEE SEATTLE - Distributed Acoustic Sensing measurement by using seafloor optical fiber cable system off Sanriku for seismic observation
摘要: The energy management system (EMS) at utility control centers collects real-time measurements to monitor current grid conditions. The EMS is also a suite of analytics that synthesizes these measurements to provide the grid operator with information to identify current problems and potential future problems. With evolving grid influences, such as growth of variable renewable generation resources, distributed generation, microgrids, demand response (DR), and customer engagement programs, managing the grid is becoming more challenging. Concurrently, however, there are nascent new technologies and advances in grid management schemes that will improve the ability to manage the future grid operations. These technologies include new subsecond synchrophasor measurements and analytics, advances in high-performance computing, visualization platforms, digital relays, cloud computing, and so on. Advances in grid management schemes include adding more intelligence at the substation and distribution systems, as well as microgrids and wide-area monitoring systems. One key initiative is to develop a predict-and-mitigate paradigm enabling anticipatory vision and timely decisions to mitigate potential problems before they spread to the rest of the grid. The word ‘‘proactive’’ means ‘‘to act now in anticipation of future problems.’’ Proactive grid management opportunities and solutions are described in this paper.
关键词: visualization,simulators,FACTS,phasor measurement units (PMUs),Energy management systems (EMSs),synchrophasors,wide-area monitoring system (WAMS)
更新于2025-09-16 10:30:52