修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

32 条数据
?? 中文(中国)
  • An efficient medium-bandgap nonfullerene acceptor for organic solar cells

    摘要: A medium-bandgap acceptor IBCT based on an 2-(1-oxo-1,2-dihydro-3H-benzo[b]cyclopenta[d]thiophen-3-ylidene)malononitrile end unit was developed. IBCT has an optical bandgap of 1.65 eV and afforded a power conversion efficiency of 11.26% and an open-circuit voltage of 1.02 V in single-junction organic solar cells when blending with a wide-bandgap copolymer donor L1. The L1:IBCT solar cell was further used as the front cell in tandem solar cells, yielding a 15.25% efficiency. IBCT is among the best medium-bandgap acceptors.

    关键词: organic solar cells,medium-bandgap acceptor,tandem solar cells,power conversion efficiency

    更新于2025-09-23 15:19:57

  • Atomic layer deposition of metal oxides for efficient perovskite single-junction and perovskite/silicon tandem solar cells

    摘要: Aluminum-doped and undoped zinc oxide films were investigated as potential front and rear contacts of perovskite single and perovskite/silicon tandem solar cells. The films were prepared by atomic layer deposition (ALD) at low (<200 °C) substrate temperatures. The deposited films were crystalline with a single-phase wurtzite structure and exhibit excellent uniformity and low surface roughness which was confirmed by XRD and SEM measurements. Necessary material characterizations allow for realizing high-quality films with low resistivity and high optical transparency at the standard growth rate. Spectroscopic ellipsometry measurements were carried out to extract the complex refractive index of the deposited films, which were used to study the optics of perovskite single junction and perovskite/silicon tandem solar cells. The optics was investigated by three-dimensional finite-difference time-domain simulations. Guidelines are provided on how to realize perovskite solar cells exhibiting high short-circuit current densities. Furthermore, detailed guidelines are given for realizing perovskite/silicon tandem solar cells with short-circuit current densities exceeding 20 mA cm?2 and potential energy conversion efficiencies beyond 31%.

    关键词: Zinc oxide,Tandem solar cells,Perovskite solar cells,Atomic layer deposition,Optical simulations

    更新于2025-09-23 15:19:57

  • Influence of the Subcell Properties on the Fill Factor of Two-Terminal Perovskitea??Silicon Tandem Solar Cells

    摘要: The performance of a tandem solar cell depends on the performance of its constituting subcells. Although this dependency is theoretically straightforward for open-circuit voltage (Voc) and short-circuit current, it is indirect for fill factor (FF) and thus for efficiency. We study here with simple simulations the effect on the tandem performance of each subcell FF by varying systematically their series resistance, parallel resistance, and local defect. We demonstrate that series resistance impacts strongly FF for single-junction devices but marginally for tandem devices, the opposite holding for parallel resistances (shunting). We show that localized defects will be most stringent to the tandem device when they occur in the current-limiting subcell. There is thus no obvious correlation between FFs of a tandem device and of its subcells. Finally, we compare two bottom-cell designs and highlight the importance of using a high-Voc bottom cell to reach high tandem efficiencies.

    关键词: series resistance,tandem solar cells,parallel resistance,perovskite-silicon,local defects,fill factor

    更新于2025-09-23 15:19:57

  • Mechanically Stacked, Two-Terminal Graphene-Based Perovskite/Silicon Tandem Solar Cell with Efficiency over 26%

    摘要: A novel configuration for high-performant perovskite/silicon tandem solar cells is demonstrated using a facile mechanical stacking of the sub-cells. The resulting champion perovskite/silicon tandem solar cell exhibits a stabilized efficiency of 25.9% over an active area of 1.43 cm2.

    关键词: graphene doping,stabilized efficiency,perovskite/silicon tandem solar cells,mechanical stacking

    更新于2025-09-23 15:19:57

  • A Taxonomy for Three-Terminal Tandem Solar Cells

    摘要: Tandem and multijunction solar cells offer the only demonstrated path to terrestrial 1-sun solar cell efficiency over 30%. Three-terminal tandem (3TT) solar cells can overcome some of the limitations of tandem solar cell designs. However, the coupled nature of the cells adds a degree of complexity to the devices themselves and the ways that their performance can be measured and reported. While many different configurations of 3TT devices have been proposed, there is no standard taxonomy to discuss the device structure or loading topology. This Perspective proposes a taxonomy for 3TT solar cells to enable a common nomenclature for discussing these devices and their performance. It also provides a brief history of three-terminal devices in the literature and demonstrates that many different 3TT devices can work at efficiencies above 30% if properly designed.

    关键词: efficiency,three-terminal tandem solar cells,nomenclature,design,taxonomy

    更新于2025-09-23 15:19:57

  • Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon

    摘要: Stacking solar cells with decreasing band gaps to form tandems presents the possibility of overcoming the single-junction Shockley-Queisser limit in photovoltaics. The rapid development of solution-processed perovskites has brought perovskite single-junction efficiencies >20%. However, this process has yet to enable monolithic integration with industry-relevant textured crystalline silicon solar cells. We report tandems that combine solution-processed micrometer-thick perovskite top cells with fully textured silicon heterojunction bottom cells. To overcome the charge-collection challenges in micrometer-thick perovskites, we enhanced threefold the depletion width at the bases of silicon pyramids. Moreover, by anchoring a self-limiting passivant (1-butanethiol) on the perovskite surfaces, we enhanced the diffusion length and further suppressed phase segregation. These combined enhancements enabled an independently certified power conversion efficiency of 25.7% for perovskite-silicon tandem solar cells. These devices exhibited negligible performance loss after a 400-hour thermal stability test at 85°C and also after 400 hours under maximum power point tracking at 40°C.

    关键词: tandem solar cells,perovskite,solar cells,solution-processed,crystalline silicon

    更新于2025-09-19 17:13:59

  • Tin and Mixed Leada??Tin Halide Perovskite Solar Cells: Progress and their Application in Tandem Solar Cells

    摘要: Metal halide perovskites have recently attracted enormous attention for photovoltaic applications due to their superior optical and electrical properties. Lead (Pb) halide perovskites stand out among this material series, with a power conversion efficiency (PCE) over 25%. According to the Shockley–Queisser (SQ) limit, lead halide perovskites typically exhibit bandgaps that are not within the optimal range for single-junction solar cells. Partial or complete replacement of lead with tin (Sn) is gaining increasing research interest, due to the promise of further narrowing the bandgaps. This enables ideal solar utilization for single-junction solar cells as well as the construction of all-perovskite tandem solar cells. In addition, the usage of Sn provides a path to the fabrication of lead-free or Pb-reduced perovskite solar cells (PSCs). Recent progress in addressing the challenges of fabricating efficient Sn halide and mixed lead–tin (Pb–Sn) halide PSCs is summarized herein. Mixed Pb–Sn halide perovskites hold promise not only for higher efficiency and more stable single-junction solar cells but also for efficient all-perovskite monolithic tandem solar cells.

    关键词: tandem solar cells,mixed Pb–Sn halide perovskites,tin halide perovskites,perovskite solar cells

    更新于2025-09-19 17:13:59

  • Light Management in Monolithic Perovskite/Silicon Tandem Solar Cells

    摘要: Perovskite/silicon tandem solar cells (TSCs), especially 2-terminal, with record efficiency of 28% already been realized, have presented great potentials to be low-cost and efficient substitutes for dominant silicon photovoltaics. It is quite realistic to achieve efficiencies exceeding 30%, which have been indicated by extensive optical simulations. Super light management in monolithic perovskite/silicon TSCs is one of the prerequisites to make it a reality. In this review, various forms of optical losses, such as reflection loss, parasitic absorption and current mismatch, are analyzed systematically to provide better understanding of the performance of perovskite/silicon TSCs. Particularly, a simple refractive index matching rule derived from the Fresnel equation is proposed as a basis of material selection and device design. Meanwhile, an overview of current strategies and challenges in monolithic perovskite/silicon TSCs is highlighted, comprising of bandgap engineering of perovskites and light trapping methods, aiming to provide guidance for further improvement of the tandem devices.

    关键词: anti-reflection,light management,parasitic absorption,light trapping,current matching,monolithic perovskite/silicon tandem solar cells

    更新于2025-09-19 17:13:59

  • 2D/3D Heterostructure for Semitransparent Perovskite Solar Cells with Engineered Bandgap Enables Efficiencies Exceeding 25% in Foura??Terminal Tandems with Silicon and CIGS

    摘要: Wide-bandgap perovskite solar cells (PSCs) with optimal bandgap (Eg) and high power conversion efficiency (PCE) are key to high-performance perovskite-based tandem photovoltaics. A 2D/3D perovskite heterostructure passivation is employed for double-cation wide-bandgap PSCs with engineered bandgap (1.65 eV ≤ Eg ≤ 1.85 eV), which results in improved stabilized PCEs and a strong enhancement in open-circuit voltages of around 45 mV compared to reference devices for all investigated bandgaps. Making use of this strategy, semitransparent PSCs with engineered bandgap are developed, which show stabilized PCEs of up to 25.7% and 25.0% in four-terminal perovskite/c-Si and perovskite/CIGS tandem solar cells, respectively. Moreover, comparable tandem PCEs are observed for a broad range of perovskite bandgaps. For the first time, the robustness of the four-terminal tandem configuration with respect to variations in the perovskite bandgap for two state-of-the-art bottom solar cells is experimentally validated.

    关键词: tandem solar cells,copper indium gallium diselenide,2D perovskites,3D perovskites

    更新于2025-09-19 17:13:59

  • Power Losses in the Front Transparent Conductive Oxide Layer of Silicon Heterojunction Solar Cells: Design Guide for Single-Junction and Four-Terminal Tandem Applications

    摘要: In silicon heterojunction solar cells, optimization of the front transparent conductive oxide (TCO) layer is required in order to minimize both electrical and optical losses. In this article, design guidelines for this overall power loss minimization are presented—extending previous TCO optimization work that was limited to the maximization of the short-circuit current density alone—and these are used to prescribe the best TCOs for both single-junction and silicon-based four-terminal tandem applications. The employed procedure determines the loss associated with the front TCO layer as a function of the TCO carrier density, mobility, and thickness, as well as the pitch between the front electrode fingers. For a representative indium tin oxide (ITO) film with a mobility of approximately 20 cm2·V?1·s?1 and a carrier density of 2.5 × 1020 cm?3, the loss over the 700–1200 nm infrared wavelength range—the spectrum reaching the silicon bottom cell in a typical tandem structure—is minimized by using a finger pitch of 3 mm and an ITO thickness of 100–110 nm. This compares with an optimal finger pitch of 2 mm and an optimal ITO thickness of 70 nm for the same cell operating as a single-junction device under full spectrum. The methodology presented can also readily be applied to TCO materials other than ITO, to a wide variety of specific four-terminal tandem architectures and, with minor modifications, to rear TCO layers.

    关键词: infrared (IR) spectrum,tandem solar cells,silicon heterojunction (SHJ) solar cells,transparent conductive oxide (TCO),Four-terminal

    更新于2025-09-16 10:30:52