- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Terahertz integrated electronic and hybrid electronic–photonic systems
摘要: The field of terahertz integrated technology has undergone significant development in the past ten years. This has included work on different substrate technologies such as III–V semiconductors and silicon, work on field-effect transistor devices and heterojunction bipolar devices, and work on both fully electronic and hybrid electronic–photonic systems. While approaches in electronic and photonics can often seem distinct, techniques have blended in the terahertz frequency range and many emerging systems can be classified as photonics-inspired or hybrid. Here, we review the development of terahertz integrated electronic and hybrid electronic–photonic systems, examining, in particular, advances that deliver important functionalities for applications in communication, sensing and imaging. Many of the advances in integrated systems have emerged, not from improvements in single devices, but rather from new architectures that are multifunctional and reconfigurable and break the trade-offs of classical approaches to electronic system design. We thus focus on these approaches to capture the diversity of techniques and methodologies in the field.
关键词: imaging,sensing,electronic–photonic systems,terahertz,communication,integrated technology
更新于2025-09-04 15:30:14
-
[IEEE 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2018) - Nagoya (2018.9.9-2018.9.14)] 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) - Terahertz Quasiparticle Acceleration: From Electron-Hole Collisions To Lightwave Valleytronics
摘要: Intense lightwaves can accelerate quasiparticles inside solids. This strong-field light-matter interaction results in the emission of high-harmonic or high-order sideband radiation. While the former process relies on a complex coupling between simultaneously driven interband polarization and intraband currents, high-order sidebands originate from a ballistic acceleration of the quasiparticles within the bands. This mechanism allows for the implementation of a quasiparticle collider in order to study those entities in close analogy to conventional collision experiments. Accelerating electrons and holes in a monolayer of transition metal dichalcogenides extends this scheme to internal quantum degrees of freedom. Our experiments show a lightwave-induced switching of the valley pseudospin, paving the way to ultimately fast valleytronics.
关键词: valley pseudospin,terahertz,high-harmonic generation,lightwave valleytronics,electron-hole collisions,quasiparticle acceleration,high-order sideband radiation,transition metal dichalcogenides
更新于2025-09-04 15:30:14
-
Copper Cobalt Magnetic Ceramic Materials Characterization at Terahertz Frequencies
摘要: This study presents the complex index of refraction and the complex permittivity of a magnetic ceramic material made of copper, cobalt, and iron oxides. The index of refraction and the extinction coefficient of the CuCo-ferrite exhibit an almost frequency independent behavior and were averaged to n = 3.62 ± 0.05 and k = 0.06 ± 0.02, respectively, over the frequency range from 0.2 to 1 THz. The corresponding complex permittivity was ε’ = 13.12 ± 0.35 for the real part and ε’’ = 0.46 ± 0.15 for the imaginary one. The absorption coefficient and the transmittance of the CuCo-ferrite were also determined. The absorption coefficient exhibits a dip at ~0.35 THz, which corresponds to a peak in transmittance at this frequency. The impact of the observations on the potential realization of novel THz electronic devices is discussed.
关键词: Terahertz,Ferrites,Transmission,Permittivity,Refractivity
更新于2025-09-04 15:30:14
-
Current‐Enhanced Broadband THz Emission from Spintronic Devices
摘要: An ultra-broadband terahertz (THz) emitter covering a wide range of frequencies from 0.1 to 10 THz is highly desired for spectroscopy applications. So far, spintronic THz emitters have been proven as one class of efficient THz sources with a broadband spectrum while the performance in the lower THz frequency range (0.1–0.5 THz) limits its applications. In this work, a novel concept of a current-enhanced broad spectrum from spintronic THz emitters combined with semiconductor materials is demonstrated. A 2–3 order enhancement of the THz signals in a lower THz frequency range (0.1–0.5 THz) is observed, in addition to a comparable performance at higher frequencies from this hybrid emitter. With a bias current, there is a photoconduction contribution from semiconductor materials, which can be constructively interfered with the THz signals generated from the magnetic heterostructures driven by the inverse spin Hall effect (ISHE). These findings push forward the utilization of metallic heterostructure-based THz emitters on the ultra-broadband THz emission spectroscopy.
关键词: spintronic devices,broadband spectrum,photoconduction,terahertz emitters
更新于2025-09-04 15:30:14
-
[Institution of Engineering and Technology 12th European Conference on Antennas and Propagation (EuCAP 2018) - London, UK (9-13 April 2018)] 12th European Conference on Antennas and Propagation (EuCAP 2018) - Antennas for Space Instruments from GHz to THz
摘要: In this paper we present an overview of different antenna technologies for space-based instruments. We show that some of the designs that work well at gigahertz frequencies are difficult to implement at terahertz frequencies due to tight tolerance and rms surface finish requirements. We also show that antenna designs are dictated not only by the frequency of operations but also by the space platform of choice. In this paper, we also present ideas for low-profile terahertz antennas for implementation on SmallSat and CubeSat platforms.
关键词: silicon,micromachining,antenna,terahertz,low-profile,micro-lens
更新于2025-09-04 15:30:14