- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
2D visible-light-driven TiO2@Ti3C2/g-C3N4 ternary heterostructure for high photocatalytic activity
摘要: A novel 2D visible-light-driven TiO2@Ti3C2/g-C3N4 ternary heterojunction photocatalyst with modified interfacial microstructure and electronic properties was synthesized by ultrasonic-assisted calcination method. The remarkably active g-C3N4 could provide high productivity of photogenerated electrons and holes. Meanwhile, the O/OH-terminated Ti3C2 and by-product TiO2 could act as excellent supporters by migrating electrons in TiO2@Ti3C2/g-C3N4 hybrids. As a result, the highest photocatalytic activities in the degradation of aniline and RhB were increased to 5 and 1.33 times higher than that of pristine g-C3N4 under visible-light irradiation, respectively. Furthermore, we proposed that n–n heterojunction and n-type Schottky heterojunction were built up across their interfaces, which efficiently improve the transition of electrons and further promote the photocatalytic activity of TiO2@Ti3C2/g-C3N4 hybrids. More appealingly, all the results highlight that the environment-friendly TiO2@Ti3C2/g-C3N4 heterojunction hybrids would be desirable candidates for pollutants degradation.
关键词: 2D materials,photocatalytic activity,TiO2@Ti3C2/g-C3N4,ternary heterojunction,pollutants degradation,visible-light-driven
更新于2025-11-14 17:03:37
-
Construction of Ternary rGO/Ag <sub/>2</sub> CO <sub/>3</sub> /AgBr Heterostructured Photocatalyst for Improved Photocatalytic Activity and Stability
摘要: Novel ternary rGO/Ag2CO3/AgBr heterostructured photocatalyst have been successfully fabricated through in-situ anion exchange synthesis route. The morphology, crystal structure, component and optical property of the as-obtained products were fully characterized by various technologies. The photocatalytic performances of the as-obtained products were measured by degrading rhodamine B (RhB) under visible light irradiation. The rGO/Ag2CO3/AgBr heterostructured photocatalyst exhibits higher photocatalytic activity than that of the pure Ag2CO3 and rGO/Ag2CO3, indicating the presence of a synergic effect between three components. The superior photocatalytical activity for the rGO/Ag2CO3/AgBr heterostructured photocatalyst is due to the formation of multi-heterojunction with rGO acting as electron mediation, which facilitate the separation of photogenerated electron and hole pairs. The possible transfer path of photogenerated carriers and mechanism for the improved photocatalytic activity are also supposed.
关键词: AgBr,Ternary Heterojunction,Ag2CO3,Photocatalysis,Visible Light Driven
更新于2025-09-09 09:28:46