修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

9 条数据
?? 中文(中国)
  • [Developments in Earth Surface Processes] Remote Sensing of Geomorphology Volume 23 || Terrestrial laser scanner applied to fluvial geomorphology

    摘要: Measuring river geometry and its evolution through time has always been a cornerstone of fluvial geomorphology. While experimental and numerical modeling of fluvial dynamics has been central in understanding long-term dynamics and testing ideas, they remain simplified versions of complex natural systems and cannot necessarily include all relevant processes. Field measurements are thus central to our understanding of elementary processes such as sediment entrainment and deposition, bank erosion, bedrock incision as well as the macroscopic dynamics of river reaches such as channel bed accretion/erosion, bedforms mobility, and river meandering. It is therefore not surprising that fluvial geomorphologists have quickly embraced the use of terrestrial laser scanner (TLS) to study rivers (e.g., Heritage and Hetherington, 2007; Hodge et al., 2009a). TLS allows 3D digitization of fluvial environment in a dense (sub-cm), accurate (mm precision), and nearly exhaustive way (Fig. 1). The very large range of spatial scales covered is particularly impressive, from individual pebbles to km long river reaches (e.g., Brasington et al., 2012). Sub-cm accuracy also offers the possibility of detecting very subtle changes (Lague et al., 2013), a key attribute to measure slow processes such as bedrock abrasion (Beer et al., 2017). Given the recent emphasis on the role of riparian processes on fluvial processes, the ability to digitize vegetation in 3D in relation to channel morphology offers a unique perspective in biogeomorphology. However, many of the promises of TLS have not really been fulfilled, and the scientific potential of the TLS dataset remains often untapped. This is largely due to the challenging aspects surrounding the processing of TLS data which, to a large extent, also apply to structure from motion (SfM) surveys (Passalacqua et al., 2015). Three challenges, akin to typical Big Data issues can be identified as follows: 1. Data Complexity: TLS data are 3D data and nearly exhaustive. This makes for very rich data but also extremely complex to process as the relevant information (e.g., ground, grains, riverbanks, vegetation) must be detected prior to scientific analysis (Fig. 1). TLS data is also natively non-regularly sampled, with strong spatial variations in point density and requires processing methods that are more complex than for 2D raster-based data such as satellite imagery. 2. Data Volume: the latest generation of TLS instruments generates billions of points in a day. Manual processing cannot realistically be applied, and automatic processing methods are paramount. This requires good programing skills as well as a culture of machine learning and computer vision approaches that are not necessarily part of the training of geomorphologists and requires bridging the gap with computer sciences. 3. Data Incompleteness: despite the very large field of view of TLS sensors, the resulting 3D data do not sample the entire surface (Fig. 1). The ground-based viewpoint imparts missing data behind obstacles (grains of any size and vegetation) and the laser is generally fully absorbed by water resulting in the lack of bathymetric data, a strong limitation in river environments. Processing methods must account for this lack of information.

    关键词: Terrestrial laser scanner,sediment transport,vegetation classification,bank erosion,3D digitization,point cloud processing,bedrock incision,fluvial geomorphology

    更新于2025-09-23 15:19:57

  • Understanding Tree-to-Tree Variations in Stone Pine (Pinus pinea L.) Cone Production Using Terrestrial Laser Scanner

    摘要: Kernels found in stone pinecones are of great economic value, often surpassing timber income for most forest owners. Visually evaluating cone production on standing trees is challenging since the cones are located in the sun-exposed part of the crown, and covered by two vegetative shoots. Very few studies were carried out in evaluating how new remote sensing technologies such as terrestrial laser scanners (TLS) can be used in assessing cone production, or in trying to explain the tree-to-tree variability within a given stand. Using data from 129 trees in 26 plots located in the Spanish Northern Plateau, the gain observed by using TLS data when compared to traditional inventory data in predicting the presence, the number, and the average weight of the cones in an individual tree was evaluated. The models using TLS-derived metrics consistently showed better fit statistics, when compared to models using traditional inventory data pertaining to site and tree levels. Crown dimensions such as projected crown area and crown volume, crown density, and crown asymmetry were the key TLS-derived drivers in understanding the variability in inter-tree cone production. These results underline the importance of crown characteristics in assessing cone production in stone pine. Moreover, as cone production (number of cones and average weight) is higher in crowns with lower density, the use of crown pruning, abandoned over 30 years ago, might be the key to increasing production in combination with stand density management.

    关键词: modeling,terrestrial laser scanner,inter-tree variability,stone pinecone production,crown characteristics

    更新于2025-09-23 15:19:57

  • ESTIMATING SINGLE TREE STEM AND BRANCH BIOMASS USING TERRESTRIAL LASER SCANNING

    摘要: This paper presents a novel non-destructive approach for individual tree stem and branch biomass estimation using terrestrial laser scanning data. The study area is located at the Royal Belum Reserved Forest area, Gerik, Perak. Each forest plot was designed with a circular shape and contains several scanning locations to ensure good visibility of each tree. Unique tree signage was located on trees with diameter at breast height (DBH) of 10cm and above. Extractions of individual trees were done manually and the matching process with the field collected tree properties were relied on the tree signage and tree location as collected by total station. Individual tree stems were reconstructed based on cylinder models from which the total stem volume was calculated. Biomass of individual tree stems was calculated by multiplying stem volume with specific wood density. Biomass of individual was estimated using similar concept of tree stem with the volume estimated from alpha-hull shape. The root mean squared errors (RMSE) of estimated biomass are 50.22kg and 27.20kg for stem and branch respectively.

    关键词: Terrestrial laser scanner,stem and branch biomass

    更新于2025-09-19 17:13:59

  • Methods to calibrate a three-sphere scale bar for laser scanner performance evaluation per the ASTM E3125-17

    摘要: A scale bar with sphere targets is one way of realizing the symmetric and asymmetric length tests to evaluate Terrestrial Laser Scanner (TLS) performance per the ASTM E3125-17 standard. The length of the scale bar is required to be known with an expanded (k = 2) uncertainty that must be at least four times smaller than the manufacturer’s maximum permissible error (MPE) specification of the instrument being tested. In this paper, we propose two methods to calibrate the scale bar length using a laser tracker. The first method, which we refer to as the four-orientation and two-face (FOTF) method, is proposed for calibrating the scale bar when it is in a horizontal orientation. The other method, which we refer to as the comparison method, is proposed for calibrating the length of the scale bar in any orientation. We describe the methods, present underlying theories, discuss validation experiments, and summarize results. The two calibration methods are beneficial for the realization of the ASTM E3125-17 standard for TLS performance evaluation.

    关键词: Three sphere scale bar,ASTM E3125-17,Terrestrial laser scanner,Laser tracker,Length calibration

    更新于2025-09-16 10:30:52

  • Leaf orientation measurement in a mixed hemiboreal broadleaf forest stand using terrestrial laser scanner

    摘要: Orientation of leaves in a mature hemiboreal mixed broadleaf stand (the J?rvselja RAMI birch stand) was measured using the high-density point cloud of terrestrial laser scanner hits. Leaf normal distribution in the upper part of crowns of tall aspen and birch trees is almost spherical, and slightly planophile in the lower part of crowns. Leaves of alder trees are rather planophile in the upper part of crowns, and strongly planophile in the lower part of crowns. Lime and maple trees form the lower layer of trees in the stand. Their crowns are mainly in shade, and therefore, their leaf orientation is strongly planophile throughout the whole crown. Parameters of beta distribution and elliptical distribution are provided for the approximation of empirical distributions. The acquired information about leaf orientation can improve performance assessment of radiative transfer models.

    关键词: Broadleaf forest,Foliage orientation,Terrestrial laser scanner

    更新于2025-09-16 10:30:52

  • Reliability of Terrestrial Laser Scanner Measurement in Slope Monitoring

    摘要: Dense 3D point clouds provided by terrestrial laser scanner (TLS) has demonstrated significant reliability of TLS in landslide monitoring. However, existence of errors in measurement is inevitable which eventually has decreased the quality of TLS data. To concretely measure the capability of TLS in landslide monitoring, this study has performed two epoch measurements using tacheometry (for benchmarking) and TLS (Topcon GLS-2000) at Kulim Techno City, Kedah, Malaysia. Sixteen (16) artificial targets were well-distributed on the slope to determine the accuracy of the employed TLS. Results obtained revealed that Topcon GLS-2000 provides 0.006m of accuracy. However, the presence of high incidence angles in TLS measurement has limited the capability to identify the significant displacement of the targets.

    关键词: Slope Monitoring,Incidence Angles,Terrestrial Laser Scanner,Landslide Monitoring,Accuracy

    更新于2025-09-16 10:30:52

  • Practical aspects of landslides surveys using terrestrial laser scanning in diverse geomorphological terrains: case studies from Polish Carpathians and Lower Vistula Valley

    摘要: High-resolution digital elevation models from terrestrial laser scanning (TLS) in recent years have been more and more often used at various stages of landslide surveys. The article presents examples of TLS use in landslide research in areas that differ in morphogenesis: in mountains and in a lowland river valley. The examples concern the monitoring of mass movements from short and long distances (up to 3100 m), generation of differential models, and estimation of surface deformation. We also discussed the limitations of TLS measurements.

    关键词: long-range terrestrial laser scanner,landslide monitoring,high-resolution digital elevation models,landslide surveys

    更新于2025-09-16 10:30:52

  • Empirical stochastic model of detected target centroids: Influence on registration and calibration of terrestrial laser scanners

    摘要: The target-based point cloud registration and calibration of terrestrial laser scanners (TLSs) are mathematically modeled and solved by the least-squares adjustment. However, usual stochastic models are simplified to a large amount: They generally employ a single point measurement uncertainty based on the manufacturers’ specifications. This definition does not hold true for the target-based calibration and registration due to the fact that the target centroid is derived from multiple measurements and its uncertainty depends on the detection procedure as well. In this study, we empirically investigate the precision of the target centroid detection and define an empirical stochastic model in the form of look-up tables. Furthermore, we compare the usual stochastic model with the empirical stochastic model on several point cloud registration and TLS calibration experiments. There, we prove that the values of usual stochastic models are underestimated and incorrect, which can lead to multiple adverse effects such as biased results of the estimation procedures, a false a posteriori variance component analysis, false statistical testing, and false network design conclusions. In the end, we prove that some of the adverse effects can be mitigated by employing the a priori knowledge about the target centroid uncertainty behavior.

    关键词: stochastic model,target centroid detection,calibration,registration,terrestrial laser scanner

    更新于2025-09-12 10:27:22

  • Understanding Lateral Marsh Edge Erosion with Terrestrial Laser Scanning (TLS)

    摘要: Coastal wetlands are a crucial buffer zone between land and sea but lateral erosion threatens their long-term sustainability. Better understanding of the forces leading to lateral marsh retreat will benefit the assessment of management options applied to mitigate the erosion. Terrestrial Laser Scanning (TLS), Light Detection and Ranging (lidar), and associated technologies are increasingly being used to assess this erosion. The central objective of this study was to identify a methodology for measuring marsh edge erosion with a TLS and correlate that erosion with exposed roots and incident wave energy. We quantified edge erosion across multiple temporal and spatial scales using a TLS, showing greater than one meter of lateral erosion over a 318-day period. We then evaluated the relationships between the erosion and incident wave energy along with erosion and vegetation roots. Wave height and erosion was strongly related (r2 = 0.99), while vegetation roots did not show an apparent effect. We discuss the challenges that arise from using TLS equipment, TLS data sets, and the use of voxels to measure marsh edge erosion.

    关键词: marsh edge erosion,voxelization,lidar,wind waves,terrestrial laser scanner

    更新于2025-09-11 14:15:04