修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Numerical and experimental analysis of the effect of metal tie layers on improving electrical properties of gold coated poly (dimethylsiloxane) flexible multi-layered films during folding

    摘要: To improve folding electrical properties of flexible electronics, this study presents a new adhesive stress analysis of depositing an adhesion layer between the conductive film electrode and the flexible substrate during folding test by a folding test platform. The folding test platform controls folding curvature of the flexible conductive substrates, folding times, and velocities in this study. Moreover, the electrical properties of flexible conductive substrates are measured during folding testing by the folding test platform. Eventually, this study successfully analyzes residual strain, adhesive stress, and electrical properties of flexible gold coated on polydimethylsiloxane substrates with chromium, nickel, and titanium adhesion layers up to 0.5/cm folding curvature during folding testing. The chromium adhesion layer had the best performance based on the largest adhesive stress, only 3.74 X resistance increase and 4.53 X maximum resistance up to 0.5/cm folding curvature during folding test by a folding test platform. The experimental result with chromium adhesion layer is consistent with adhesive stress analysis and provides a better adhesive strength between gold and polydimethylsiloxane than nickel and titanium materials for folding test. Therefore, adhesive stress analysis is adapted to evaluate the foldable electronics performance for improving folding characteristics easier.

    关键词: flexible electronics,Folding electrical property,folding test platform,adhesive stress analysis,adhesion layer

    更新于2025-09-23 15:22:29

  • [IEEE 2018 Global Internet of Things Summit (GIoTS) - Bilbao, Spain (2018.6.4-2018.6.7)] 2018 Global Internet of Things Summit (GIoTS) - Lighting IoT Test Environment (LITE) Platform: Evaluating Light-Powered, Energy HarvestingEmbedded Systems

    摘要: As interest in the Internet of Things (IoT) grows, so does the requirement for distributed sensing, computation, and communication. Some projections reach a scale of over a trillion wireless devices, which creates a battery replacement challenge that is unsustainable for both human resources (replacement effort) and the environment (disposal). One ?eld of research that strives to meet this challenge is energy harvesting (EH) for self-powered systems. Photovoltaic (PV) cells enable EH capabilities and provide high energy density. They are also typically inexpensive, often making them the transducer of choice for self-powered systems. However, the performance of these EH nodes is rarely evaluated under realistic IoT environmental conditions, such as variable indoor lighting. Under low light, PV cells draw very little power and could place the self-powered system in a standby or even nonfunctional state. Most evaluations of EH systems in various lighting environments use software simulations to predict the behaviour of these nodes, but approximate models lack the exactness required to help with veri?cation of hardware in real conditions. Another approach is user testing in the ?eld, but this arduous solution would incur a variety of costs. This paper presents a third alternative: the Lighting IoT Test Environment (LITE) platform. The LITE platform is a tool that provides insight on how light-powered EH systems operate in low lighting environments. The LITE platform is able to physically emulate a variety of indoor and outdoor lighting sources with a novel mapping technique and provide time-series, environmental simulation of that source on a device under test (DUT). The light source emulation and time-series simulation capabilities are characterized with a worst case mean absolute percentage error (MAPE) of 3.2% and MAPE of 0.5%, respectively. By enabling engineers to accurately understand how these self-powered systems work under real world conditions, the LITE platform will better equip them to design, debug, and distribute fully functional and sustainable IoT nodes.

    关键词: internet of things,test platform,system on chip,embedded systems,photovoltaic,energy harvesting,veri?cation

    更新于2025-09-10 09:29:36