修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

4 条数据
?? 中文(中国)
  • Antimicrobial efficacy of photodynamic therapy on dental implant surfaces: A systematic review of in vitro studies

    摘要: Background: To systematically review the literature regarding the antimicrobial effects of photodynamic therapy (PDT) on the multi-bacterial species and the possible surface alterations of the dental implants as a result of PDT. Methods: The addressed focused question was: “Does PDT show antimicrobial efficacy against multi-bacterial species colonization and result in surface alteration on dental implants?” Electronic databases including MEDLINE and EMBASE up to and including December 2018 were searched. Results: Seven studies were included. Two studies used a total of 110 titanium dental implants, while 1 study included a total of 72 zirconia dental implants. Three studies investigated the antimicrobial PDT effects on titanium discs, while 1 study used titanium plates with germanium prisms. All in-vitro studies used diode laser. Energy fluence was reported only in 2 studies. Power output and density were 100 milliwatts (mW) and 150 mW cm-2, respectively. All in-vitro studies reported the multibacterial species outcomes after the application of antimicrobial PDT. All studies showed a significant reduction in the bacterial load. Only two studies reported the outcomes of microstructural changes on the titanium surface, in which both studies did not report any significant alterations on the titanium implants or discs with the application of PDT. Conclusion: This systematic review demonstrated significant reduction in the bacterial load but inconclusive findings regarding structural alterations on the titanium surface with the use of PDT. The results of this review should be considered preliminary and further in-vitro studies with standardized laser parameters are needed to obtain strong conclusions.

    关键词: systematic review,titanium surface,dental implants,photodynamic therapy,bacterial load

    更新于2025-09-23 15:22:29

  • Impact of Laser Structuring on Medical-Grade Titanium: Surface Characterization and In Vitro Evaluation of Osteoblast Attachment

    摘要: Improved implant osteointegration offers meaningful potential for orthopedic, spinal, and dental implants. In this study, a laser treatment was used for the structuring of a titanium alloy (Ti6Al4V) surface combined with a titanium dioxide coating, whereby a porous surface was created. The objective was to characterize the pore structure shape, treatment-related metallographic changes, cytocompatibility, and attachment of osteoblast-like cells (MG-63). The treatment generated specific bottleneck pore shapes, offering the potential for the interlocking of osteoblasts within undercuts in the implant surface. The pore dimensions were a bottleneck diameter of 27 μm (SD: 4 μm), an inner pore width of 78 μm (SD: 6 μm), and a pore depth of 129 μm (SD: 8 μm). The introduced energy of the laser changed the metallic structure of the alloy within the heat-affected region (approximately 66 μm) without any indication of a micro cracking formation. The phase of the alloy (microcrystalline alpha + beta) was changed to a martensite alpha phase in the surface region and an alpha + beta phase in the transition region between the pores. The MG-63 cells adhered to the structured titanium surface within 30 min and grew with numerous filopodia over and into the pores over the following days. Cell viability was improved on the structured surface compared to pure titanium, indicating good cytocompatibility. In particular, the demonstrated affinity of MG-63 cells to grow into the pores offers the potential to provide significantly improved implant fixation in further in vivo studies.

    关键词: orthopedics,titanium,surface,osteointegration,coating,dental,laser

    更新于2025-09-23 15:21:01

  • Effects of Novel Laser Dental Implant Microtopography on Human Osteoblast Proliferation and Bone Deposition

    摘要: The aim of this study was to compare how two innovative laser titanium surfaces and sandblasted and acid-etched surfaces influence human osteoblast behavior during osteogenesis and the initial phases of bone deposition. Human osteoblasts from human adipose stem cells were sorted by flow cytometric analysis and induced to differentiate. After 40 days, the osteogenic differentiation was detected by alizarin red staining, and the alkaline phosphatase (ALP) was evaluated with western blot (WB) and real-time reverse transcriptase-polymerase chain reaction (RT-PcR) analysis. After confluence, human osteoblasts were cultured onto two different innovative laser-obtained titanium surfaces (L1 and L2) and compared with one sandblasted and acid-etched (SBAE) surface as the control. At different times, human osteoblast behavior was evaluated with cell proliferation viability assay (MTT), scanning electron microscopy (SEM), energy-dispersive x-rays (EDAX), osteogenic markers with RT-PcR, and WB analysis of matrix extracellular phosphoglycoprotein (MEPE), ALP, and osteocalcin (OCN). Results: After cell sorting, the human osteoblasts from human adipose stem cells showed increasing values of ALP mRNA and protein expression. The osteogenic differentiation was confirmed by quantitative alizarin red staining assay. Profilometric and SEM analysis showed relevant differences between SBAE, L1, and L2 specimens. After 20 days of culture onto titanium samples, SEM evaluation showed a small number of human osteoblasts and isolated sites of bone matrix deposition in SBAE specimens. At the same time, on L1 surfaces, only an osteoblast mono-layer with initial bone deposition was found, while on L2 specimens, there was a thick network with flattened large stellate cells, many cellular interconnections with strong titanium adhesion, and a large complex mineralized structure of crystal bone. After 20 days, for all titanium samples, human osteoblasts culturing EDAX analysis showed the absence of impurities and a higher bone matrix deposition in L2 specimens compared with L1 and SBAE samples. Conclusion: The innovative microtopography and nanotopography laser-induced surface showed high biocompatibility with primary human osteoblast cultures and the absence of impurities. The innovative laser texture was capable of influencing the osteogenic process, confirming the critical role of titanium surface characteristics in the cell adhesion and bone deposition during the early phases of osseointegration. The association of human adipose stem cells and titanium surfaces laser-induced with an innovative procedure could generate promising improvements and developments in orthopedics, maxillofacial, and dental implant surgery.

    关键词: laser titanium surface,titanium dental implant,human osteoblasts,bone,osseointegration

    更新于2025-09-19 17:13:59

  • Q-Switch Nd:YAG Laser-Assisted Elimination of Multi-Species Biofilm on Titanium Surfaces

    摘要: (1) Background: The relatively high prevalence of peri-implantitis (PI) and the lack of a standard method for decontamination of the dental implant surface have pushed us to conduct further research in the field. Bacterial biofilms were found to play a primordial role in the etiology of PI. Therefore, the aim is to evaluate the efficacy of a laser-assisted elimination of biofilm protocol in the removal of a multi-species biofilm on titanium surfaces. (2) Methods: In total, 52 titanium discs (grade 4) were used. The study group consisted of 13 titanium disks contaminated with multi-species biofilms and subsequently irradiated with the laser (T + BF + L). The control groups consisted of the following types of titanium disks: 13 contaminated with multi-species biofilms (T + BF), 13 sterile and irradiated (T + L), 13 sterile and untreated (T). Q-Switch Nd:YAG laser Irradiation parameters were the following: energy density equal to 0.597 J/cm2 per pulse, power equal to 270 milliwatt per pulse, 2.4 mm of spot diameter, and 10 Hz repetition rate for pulse duration of six nanoseconds (ns). The laser irradiation was made during 2 s of total time in non-contact and at 0.5 mm away from the titanium disc surface. After treatment, presence of biofilms on the disks was evaluated by staining with crystal violet (CV), which was measured as optical density at six hundred thirty nm, and statistical analyses were done. (3) Results: the optical density values were 0.004 ± 0.004 for the study group T + BF + L, 0.120 ± 0.039 for group T + BF, 0.006 ± 0.003 for group T + L, and 0.007 ± 0.007 for group T. For the study group, laser treatment resulted in a total elimination of the biofilm, with mean values statistically significantly lower than those of contaminated titanium surfaces and similar to those of sterile titanium surfaces. (4) Conclusions: Our irradiation protocol provided a significant elimination of the multi-species biofilm on titanium surfaces. Laser treated titanium surfaces were biofilm-free, similar to the sterile ones.

    关键词: titanium surface,dental implant,biofilm removal,laser,periimplantitis,biofilm

    更新于2025-09-19 17:13:59