修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

11 条数据
?? 中文(中国)
  • Silver Nanostructures on Graphene Oxide as the Substrate for Surface-Enhanced Raman Scattering (SERS)

    摘要: Nanosized surface-enhanced Raman scattering (SERS) substrates fabricated by the controlled growth of metal nanostructures on water-dispersed two-dimensional nanomaterials can open a new avenue for SERS analysis of liquid samples in biological fields. In this work, regular and uniform Ag nanostructures were grown on the surface of graphene oxide (GO) through a microwave-assisted hydrothermal method. Polyamidoamine (PAMAM) dendrimers were assembled on the surface of GO to form GO/PAMAM templates for growing Ag nanostructures, which are primarily comprised of Ag dimers and trimers. The prepared Ag/GO nanocomposites are highly dispersed and stable in aqueous solution and may be used as substrates for enhanced Raman detection of rhodamine 6 G (R6G) in aqueous solution. This special substrate provides high-performance SERS and suppresses R6G fluorescence in aqueous solution and is promising as a nanosized material for the enhanced Raman detection of liquid samples in biological diagnostics.

    关键词: graphene oxide (GO),Surface-enhanced Raman scattering (SERS),polyamidoamine (PAMAM) dendrimers,transmission electron microscopy (TEM),Fourier transform infrared (FTIR) spectroscopy,rhodamine 6G (R6G)

    更新于2025-09-23 15:23:52

  • Quality of extracellular vesicle images by transmission electron microscopy is operator and protocol dependent

    摘要: Transmission electron microscopy (TEM) has nanometre resolution and can be used to distinguish single extracellular vesicles (EVs) from non-EV particles. TEM images of EVs are a result of operator image selection. To which extent operator image selection reflects the overall sample quality, and to which extent the images are comparable and reproducible, is unclear. In a first attempt to improve the comparability and reproducibility of TEM to visualise EVs, we compared operator image selection to images taken at predefined locations from the same grids, using four EV TEM preparation protocols, a single EV-containing sample and a single TEM instrument. Operator image selection leads to high-quality images that are more similar between the protocols. In contrast, images taken at predefined locations reveal differences between the protocols, for example in number of EVs per image and background quality. From the evaluated protocols, for only one protocol the operator image selection is comparable to the TEM images taken at predefined locations. Taken together, operator image selection can be used to demonstrate the presence of EVs in a sample, but seem less suitable to demonstrate the quality of a sample. Because images taken at predefined locations reflect the overall quality of the EV-containing sample rather than the presence of EVs alone, this is a first step to improve the comparability and reproducibility of TEM for monitoring the quality of EV-containing samples.

    关键词: urine,negative staining,transmission electron microscopy (TEM),Exosomes,extracellular vesicles (EVs),microvesicles

    更新于2025-09-23 15:23:52

  • Voids in Kesterites and the Influence of Lamellae Preparation by Focused Ion Beam for Transmission Electron Microscopy Analyses

    摘要: Kesterite solar cells based on Cu2 ZnSnS4 and Cu2 ZnSnSe4 (CZTSe) are potential future candidates to be used in thin-film solar cells. The technology still has to be developed to a great extent and for this to happen, high levels of confidence in the characterization methods are required, so that improvements can be made on solid interpretations. In this study, we show that the interpretations of one of the most used characterization techniques in kesterites, scanning transmission electron microscopy (STEM), might be affected by its specimen preparation when using focused ion beam (FIB). Using complementary measurements based on scanning electron microscopy and Raman scattering spectroscopy, compelling evidence shows that secondary phases of ZnSe mixed in the bulk of CZTSe are the likely cause of the appearance of voids in STEM lamellae. Sputtering simulations support this interpretation by showing that Zn in a ZnSe matrix is preferentially sputtered compared with any metal atom in a CZTSe matrix.

    关键词: Cu2 ZnSn(S, Se)4 (CZTSSe),thin-film solar cells,transmission electron microscopy (TEM),focused ion beam (FIB),kesterite

    更新于2025-09-23 15:22:29

  • V-Defect and Dislocation Analysis in InGaN Multiple Quantum Wells on Patterned Sapphire Substrate

    摘要: InGaN/GaN multiquantum well (MQW) structures have been grown on cone-shaped patterned sapphire substrates (CPSS) by metalorganic chemical vapor deposition (MOCVD). From the transmission electron microscopy (TEM) results, we found that most of the threading dislocations (TDs) in the trench region of the CPSS were bent by lateral growth mode. Also the staircase-like TDs were observed near the slant region of the cone pattern, they converged at the slope of the cone patterned region by staircase-upward propagation, which seems to effectively prevent TDs from vertical propagation in the trench region. The associated dislocation runs up into the overgrown GaN layer and MQW, and some (a+c) dislocations were shown to decompose inside the multi-quantum well, giving rise to a misfit segment in the c-plane and a V-shape defect. From cross-sectional TEM, we found that all V defects are not always connected with TDs at their bottom, some V defects are generated from the stacking mismatch boundaries induced by stacking faults which are formed within the MQW due to the strain relaxation.

    关键词: V defects,Transmission electron microscopy (TEM),InGaN multi-quantum well (MQW),Threading dislocations (TDs)

    更新于2025-09-23 15:22:29

  • Deformation and removal of semiconductor and laser single crystals at extremely small scales

    摘要: Semiconductor and laser single crystals are usually brittle and hard, which need to be ground to have satisfactory surface integrity and dimensional precision prior to their applications. Improvement of the surface integrity of a ground crystal can shorten the time of a subsequent polishing process, thus reducing the manufacturing cost. The development of cost-effective grinding technologies for those crystals requires an in-depth understanding of their deformation and removal mechanisms. As a result, a great deal of research efforts were directed towards studying this topic in the past two or three decades. In this review, we aimed to summarize the deformation and removal characteristics of representative semiconductor and laser single crystals in accordance with the scale of mechanical loading, especially at extremely small scales. Their removal mechanisms were critically examined based on the evidence obtained from high-resolution TEM analyses. The relationships between machining conditions and removal behaviors were discussed to provide a guidance for further advancing of the grinding technologies for those crystals.

    关键词: semiconductor,laser crystal,deformation and removal,transmission electron microscopy (TEM),grinding

    更新于2025-09-23 15:21:01

  • Influence of Silicon Layers on the Growth of ITO and AZO in Silicon Heterojunction Solar Cells

    摘要: In this article, we report on the properties of indium tin oxide (ITO) deposited on thin-film silicon layers designed for the application as carrier selective contacts for silicon heterojunction (SHJ) solar cells. We find that ITO deposited on hydrogenated nanocrystalline silicon (nc-Si:H) layers presents a significant drop on electron mobility μe in comparison to layers deposited on hydrogenated amorphous silicon films (a-Si:H). The nc-Si:H layers are not only found to exhibit a larger crystallinity than a-Si:H, but are also characterized by a considerably increased surface rms roughness. As we can see from transmission electron microscopy (TEM), this promotes the growth of smaller and fractured features in the initial stages of ITO growth. Furthermore, secondary ion mass spectrometry profiles show different penetration depths of hydrogen from the thin film silicon layers into the ITO, which might both influence ITO and device passivation properties. Comparing ITO to aluminum doped zinc oxide (AZO), we find that AZO can actually exhibit superior properties on nc-Si:H layers. We assess the impact of the modified ITO Rsh on the series resistance Rs of SHJ solar cells with >23% efficiency for optimized devices. This behavior should be considered when designing solar cells with amorphous or nanocrystalline layers as carrier selective contacts.

    关键词: secondary ion mass spectrometry (SIMS),indium tin oxide (ITO),series resistance,Aluminum doped zinc oxide (AZO),transparent conductive oxide (TCO),transmission electron microscopy (TEM),silicon heterojunction (SHJ)

    更新于2025-09-16 10:30:52

  • Transmission Electron Microscopy and Electron Energy-Loss Spectroscopy Studies of Hole-Selective Molybdenum Oxide Contacts in Silicon Solar Cells

    摘要: In this study, sub-stochiometric hole-selective molybdenum oxide (MoOx) contacts in crystalline silicon (c-Si) solar cells were investigated by a combination of transmission electron microscopy (TEM) and spatially-resolved electron energy-loss spectroscopy (SR-EELS). It was observed that a ≈ 4 nm SiOx interlayer grows at the MoOx/c-Si interface during the evaporation of MoOx over c-Si substrate. SR-EELS analyses revealed the presence of 1.5 nm diffused MoOx/ITO (indium tin oxide) interface in both as-deposited and annealed samples. Moreover, the presence of a 1 nm thin layer with a lower oxidation state of Mo was detected at SiOx/MoOx interface in as-deposited state which disappears upon annealing. Overall, it was evident that no hole-blocking interlayer is formed at MoOx/ITO interface during annealing and homogenization of the MoOx layer takes place during the annealing process. Furthermore, device simulations revealed that efficient hole collection is dependent on MoOx work function and that reduction in work function of MoOx results in loss of band bending and negatively impacts hole-selectivity.

    关键词: silicon,electron energy-loss spectroscopy (EELS),hole-selective,transmission electron microscopy (TEM),molybdenum oxide (MoOx)

    更新于2025-09-12 10:27:22

  • Real-Time Electron Nanoscopy of Photovoltaic Absorber Formation from Kesterite Nanoparticles

    摘要: Cu2ZnSnS4 nanocrystals are annealed in a Se-rich atmosphere inside a transmission electron microscope. During the heating phase, a complete S-Se exchange reaction occurs while the cation sublattice and morphology of the nanocrystals are preserved. At the annealing temperature, growth of large Cu2ZnSnSe4 grains with increased cation ordering is observed in real-time. This yields an annealing protocol which is transferred to an industrially-similar solar cell fabrication process resulting in a 33% increase in the device open circuit voltage. The approach can be applied to improve the performance of any photovoltaic technology that requires annealing because of the criticality of the process step.

    关键词: cation ordering,Kesterite,photovoltaics,in situ transmission electron microscopy (TEM),annealing

    更新于2025-09-12 10:27:22

  • Coaxial waterjet-assisted laser drilling of film cooling holes in turbine blades

    摘要: Film cooling holes (FCHs) of nickel-based single crystal turbine blades were drilled by 532 nm Nd:YVO4 nanosecond laser in coaxial waterjet-assisted environment. Microstructure of the side wall of the FCHs was mainly investigated by means of transmission electron microscopy. The average thickness of heat affected zone (HAZ) around FCHs decreases with increasing of water flow rate. The main phase within HAZ evolves from β-NiAl to β-NiAl + γ-Ni with the increase in the water flow rate. Some γ-Ni particles in the HAZ twined along (111) plane. A small portion of the FCHs are free of HAZ when drilled by coaxial waterjet-assisted laser drilling at a laminar water flow rate ≥ 3.1 m/s. There are no processing-induced defects including HAZ, microcrack, and phase transformation around the FCHs when drilled at the water flow rate ≥ 5.1 m/s. The FCHs with high surface quality can be drilled by the coaxial waterjet-assisted laser drilling. Finally, effects of fluid water on drilling quality of the FCHs were discussed.

    关键词: turbine blades,film cooling holes,Coaxial waterjet-assisted laser drilling,heat affected zone (HAZ),transmission electron microscopy (TEM)

    更新于2025-09-11 14:15:04

  • Determination of Sulfite in Botanical Medicine Using Headspace Thin-Film Microextraction and Surface Enhanced Raman Spectrometry

    摘要: A facile method using headspace thin-film microextraction (HS-TFME) coupled with surface enhanced Raman spectrometry (SERS) has been developed for the determination of sulfite in traditional Chinese herbal medicine. The extraction substrate was synthesized by depositing urchin-like ZnO micron particles on glass sheets using chemical liquid phase deposition. Under the optimal conditions, the intensity of the SERS signal at 630–640 cm?1 provided a good linear relationship with the concentration of sulfite from 25 to 400 mg/kg, and the linear correlation coefficient (R) was 0.996 with a detection limit of 6 mg/kg. The method was employed for the determination of sulfite in herbal medicines, and the results were confirmed by a traditional distillation-titration method. Therefore, this developed HS-TFME-SERS method may play an important role in the rapid, simple, and selective determination of sulfite residues in Chinese herbal medicine and become a potentially universal method for this analyte in various solid samples.

    关键词: Headspace thin-film microextraction (HS-TFME),scanning electron microscopy (SEM),X-ray diffraction (XRD),surface enhanced Raman spectrometry (SERS),transmission electron microscopy (TEM)

    更新于2025-09-10 09:29:36