修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Energy band alignment in molybdenum oxide/ Cu(In,Ga)Se2 interface for high efficiency ultrathin Cu(In,Ga)Se2 solar cells from low-temperature growth

    摘要: In this work, the molybdenum oxide (MoOx) was employed as a back contact layer to improve the device performance of ultrathin Cu(In,Ga)Se2 (CIGS) solar cells with CIGS absorber synthesized through the low-temperature three-stage co-evaporation process. This contribution focuses on the investigation of the inherent mechanisms and the improved device performance in detail. Our research shows that the energy band of the CIGS/Mo interface can be tuned and the Schottky barrier can be reduced. Compared with the reference sample without MoOx, the back barrier height of the new device with 10 nm MoOx enjoys a significant decrease from 43.83 meV to 15.98 meV because of the improvement of energy band structure. Meanwhile, the results of wxAMPS simulation corroborate that the energy band bends upward in the devices with appropriate thickness of MoOx films, which facilitates the carrier transportation and suppresses the recombination of charge carriers at the MoOx/Cu(In,Ga)Se2 interface. Moreover, the carriers can transport through the MoOx/CIGS interface by tunneling when the MoOx film is thin enough. Finally, by controlling the thicknesses of MoOx films, an efficiency of 10.38 % is achieved in 0.5 μm CIGS solar cells by optimizing the MoOx thickness under the low-temperature three-stage co-evaporation process.

    关键词: ultrathin,Cu(In,Ga)Se2,MoOx,low-temperature,energy band

    更新于2025-09-23 15:19:57

  • Reflective Back Contacts for Ultrathin Cu(In,Ga)Se2-Based Solar Cells

    摘要: We report on the development of highly reflective back contacts (RBCs) made of multilayer stacks for ultrathin CIGS solar cells. Two architectures are compared: they are made of a silver mirror coated either with a single layer of In2O3:Sn (ITO) or with a bilayer of ZnO:Al/ITO. Due to the improvement of CIGS rear reflectance, both back contacts result in a significant external quantum efficiency enhancement, in agreement with optical simulations. However, solar cells fabricated with Ag/ITO back contacts exhibit a strong shunting behavior. The key role of the ZnO:Al layer to control the morphology of the top ITO layer and to avoid silver diffusion through the back contact is highlighted. For a 500-nm-thick CIGS layer, this optimized RBC leads to a best cell with a short-circuit current of 27.8 mA/cm2 (+2.2 mA/cm2 as compared to a Mo back contact) and a 12.2%-efficiency (+2.5% absolute).

    关键词: photovoltaic cells,reflective back contacts,ultrathin Cu(In,Ga)Se2,In2O3:Sn

    更新于2025-09-11 14:15:04