- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
WS2: A New Window Layer Material for Solar Cell Application
摘要: Radio frequency (RF) magnetron sputtering was used to deposit tungsten disulfide (WS2) thin films on top of soda lime glass substrates. The deposition power of RF magnetron sputtering varied at 50, 100, 150, 200, and 250 W to investigate the impact on film characteristics and determine the optimized conditions for suitable application in thin-film solar cells. Morphological, structural, and opto-electronic properties of as-grown films were investigated and analyzed for different deposition powers. All the WS2 films exhibited granular morphology and consisted of a rhombohedral phase with a strong preferential orientation toward the (101) crystal plane. Polycrystalline ultra-thin WS2 films with bandgap of 2.2 eV, carrier concentration of 1.01 × 1019 cm?3, and resistivity of 0.135 Ω-cm were successfully achieved at RF deposition power of 200 W. The optimized WS2 thin film was successfully incorporated as a window layer for the first time in CdTe/WS2 solar cell. Initial investigations revealed that the newly incorporated WS2 window layer in CdTe solar cell demonstrated photovoltaic conversion efficiency of 1.2% with Voc of 379 mV, Jsc of 11.5 mA/cm2, and FF of 27.1%. This study paves the way for WS2 thin film as a potential window layer to be used in thin-film solar cells.
关键词: WS2,window layer,thin-film solar cells,CdTe,RF magnetron sputtering
更新于2025-09-19 17:13:59
-
Non-epitaxial carrier selective contacts for III-V solar cells: A review
摘要: In the last few years, carrier selective contacts have emerged as a means to reduce the complexities and losses associated with conventional doped p-n junction solar cells. Still, this topic of research is only at its infancy for III-V solar cells, in comparison to other solar cell materials such as silicon, perovskites, chalcogenides, etc. This could be because high quality III-V solar cell materials can be achieved relatively easily using epitaxial growth techniques such as MOCVD (metal organic chemical vapor deposition) and MBE (molecular-beam epitaxy). However, current epitaxial III-V solar cells are very expensive and cannot compete for the terrestrial market, and therefore, researchers are developing alternative growth methods such as thin-film vapor–liquid–solid (TF-VLS), hydride vapor phase epitaxy (HVPE) and closed space vapor transport (CSVT), which are significantly lower in cost compared to epitaxial III-V solar cells. However, at present, these relatively nascent low cost growth methods, face severe optimization issues when it comes to growth of controlled p-n junction, along with heavily doped window and back surface field layers. In such cases, carrier selective contacts can be hugely beneficial. In this review, we cover some of the most recent research on the use of carrier selective contacts for III-V solar cells. Future prospects, challenges, and new device concepts using carrier selective contacts will also be discussed.
关键词: Passivation,III-V solar cell,Heterojunction,Window layer,Carrier selective contact
更新于2025-09-12 10:27:22