- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
A multi-level bipolar memristive device based on visible light sensing MoS<sub>2</sub> thin film
摘要: Transition Metal Dichalcogenides (TMDs) holding a graphene like 2D structure, offer a vast area of applications in nanoscale electronics. TMD based on MoS2, was thermally grown on ITO coated substrate to perform as a transparent switching layer. The structural and chemical properties of as synthesized MoS2 nanoparticles and thin films have been studied by using X-ray diffraction analysis and scanning electron microscopy, while memory application is manifested by fabricating Al/MoS2/ITO devices. Detailed electrical characterizations suggested that the device shows bipolar resistive switching with low operating voltage, multilevel capability, long retention capacity, presenting its potential as an application in high-density data storage field. In addition, the excellent photo-response capability of the device enriches its execution in light sensing electronic devices along with the resistive switching property.
更新于2025-11-21 11:03:13
-
Molecularly imprinted based surface plasmon resonance nanosensors for microalbumin detection
摘要: Human serum albumin (HSA) is a major blood plasma protein also found in urine where its existence may be a marker of some types of liver or kidney dysfunction. Herein, we fabricated a novel surface plasmon resonance (SPR) nanosensor for selective, sensitive, and label-free microalbumin detection both in aqueous and urine sample solutions. Firstly, HSA-imprinted nanoparticles were synthesized, which consist of ethylene glycol dimethacrylate and N-methacryloyl-L-leucine as a cross-linker and functional monomer. The nanoparticles were characterized by zeta-size and scanning electron microscope analyses and were dropped onto the SPR chip surface to make HSA sensitive nanosensor. Characterization studies of HSA-imprinted SPR chip were carried out by atomic force microscopy, Fourier-transform infrared spectroscopy, contact angle, and ellipsometer. The limit of detection and limit of quantification values of HSA-imprinted SPR nanosensor were calculated as 0.7 pM and 1.9 pM for the concentration range of 0.15-500 nM. Selectivity studies of HSA-imprinted SPR nanosensor were achieved with hemoglobin and transferrin proteins which were chosen as competitor molecules. HSA-imprinted SPR nanosensor was displayed highly selective and sensitive to HSA.
关键词: surface plasmon resonance,nanosensor,nanoparticles,microalbumin detection
更新于2025-11-21 11:03:13
-
Dual Management of Electrons and Photons to Get High-Performance Light Emitting Devices Based on Si Nanowires and Si Quantum Dots with Al <sub/>2</sub> O <sub/>3</sub> -Ag Hybrid Nanostructures
摘要: Silicon quantum dot (Si QD)-based light emitting devices are fabricated on Si nanowire (Si NW) arrays. Through inserting Al2O3-Ag hybrid nanostructures (Al2O3-Ag HNs) between Si NWs and Si QDs, both photoluminescence (PL) and electroluminescence (EL) are remarkably enhanced compared to the control sample. The PL enhancement can be mainly attributed to passivation effect of Al2O3 to p-type Si NWs and enlarged absorption cross-section due to the local surface plasmon resonance effect of Ag nanoparticles. The EL intensity is enhanced by 14.9-fold at the same injection current under a lower applied voltage, which may result from the high injection efficiency of electrons and the promoted waveguide effect of nanowire structures with Al2O3-Ag HNs. It is demonstrated that light emitting device performances can be well improved by careful management of both electrons and photons via controlling the interface conditions of Si NWs/Si QDs.
关键词: hybrid nanostructures,silicon nanowires,light emitting devices,silicon quantum dots
更新于2025-11-21 11:01:37
-
Low Power Consumption Red Light-Emitting Diodes Based on Inorganic Perovskite Quantum Dots under an Alternating Current Driving Mode
摘要: Inorganic perovskites have emerged as a promising candidate for light-emitting devices due to their high stability and tunable band gap. However, the power consumption and brightness have always been an issue for perovskite light-emitting diodes (PeLEDs). Here, we improved the luminescence intensity and decreased the current density of the PeLEDs based on CsPbI3 quantum dots (QDs) and p-type Si substrate through an alternating current (AC) driving mode. For the different driving voltage modes (under a sine pulsed bias or square pulsed bias), a frequency-dependent electroluminescent (EL) behavior was observed. The devices under a square pulsed bias present a stronger EL intensity under the same voltage due to less thermal degradation at the interface. The red PeLEDs under a square pulsed bias driving demonstrate that the EL intensity drop-off phenomenon was further improved, and the integrated EL intensity shows the almost linear increase with the increasing driving voltage above 8.5 V. Additionally, compared to the direct current (DC) driving mode, the red PeLEDs under the AC condition exhibit higher operating stability, which is mainly due to the reducing accumulated charges in the devices. Our work provides an effective approach for obtaining strong brightness, low power consumption, and high stability light-emitting devices, which will exert a profound in?uence on coupling LEDs with household power supplies directly.
关键词: low power consumption,perovskite quantum dots,silicon,light emitting diodes,alternating current driving
更新于2025-11-21 11:01:37
-
LED visible-light driven label-free photoelectrochemical immunosensor based on WO3/Au/CdS photocatalyst for the sensitive detection of carcinoembryonic antigen
摘要: A ternary WO3/Au/CdS photocatalyst was prepared by reversible redox and ionic adsorption for the first time. The photocatalyst exhibited high photocatalytic activity and good photoelectrochemical (PEC) property in comparison with WO3, CdS, WO3/Au and WO3/CdS, because the localized surface plasmon resonance (LSPR) effect of Au nanoparticles (Au NPs) and the sensitization of CdS benefited the spatial separation of photogenerated electron-hole pairs and the absorption of visible light. Thus, its photocurrent response intensity was quite high, up to about 218-fold of WO3 and 87-fold of CdS under 430 nm LED light irradiation. Based on the large anodic photocurrent and the specific recognition between carcinoembryonic antigen (CEA) and anti-CEA, a novel PEC immunosensor was constructed for the sensitive and selective detection of CEA. Under the selected conditions, the change of photocurrent intensity was linear to the logarithm of CEA concentration over the range from 0.01 to 10 ng/mL, and the detection limit was down to 1 pg/mL. The immunosensor also showed good stability, reproducibility and repeatability. It was successfully applied to the detection of CEA in serum samples.
关键词: Au nanoparticles,WO3,Photoelectrochemical immunosensor,Carcinoembryonic antigen,CdS
更新于2025-11-21 11:01:37
-
3D laser scanning and digital restoration of an archaeological find
摘要: The current paper demonstrates the digital recreation and 3D printing of a missing fragment of an ancient ceramic pottery following digitization using a three dimensional laser scanning. The resulting point-cloud of the laser scans was treated with a series of advanced software for the creation of surfaces and ultimately for a digital model. An analytical methodology is presented revealing the step by step approach, which is an innovative way of recreating a missing fragment. Such approach aims to demonstrate the level of contribution that the ever evolving computer based technologies and 3D printing could bring to cultural heritage. The reverse engineering method presented for the reconstruction of a ceramic pottery, which is a part of the larger field of digital archaeology, is believed to benefit a variety of interested parties including 3D CAD users and designers, archaeologists and museum curators.
关键词: 3D printing,archaeological find,reverse engineering,digital restoration,3D laser scanning
更新于2025-11-21 11:01:37
-
Coral-Like Perovskite Nanostructures for Enhanced Light-Harvesting and Accelerated Charge Extraction in Perovskite Solar Cells
摘要: A novel coral-like perovskite nanostructured layer was grown on a compact perovskite foundation layer by the facile surface modification with dimethylformamide/isopropanol (DMF/IPA) as co-solvent. Surface morphological characterizations with SEM and XRD analyses revealed a growing mechanism of the new morphology, which was composed of the perovskite decomposition and recrystallization, excessive-PbI2 extraction, and sequential formation of coral-like nanostructured perovskite layer. The coral-like perovskite nanostructures resulted in significant light scattering, enhancing the light harvesting efficiency, and thus augmenting the photocurrent density. Moreover, the geometric configuration of the perovksite solar cells was changed from planar to bulk heterojunction, which results in the acceleration of charge separation and extraction due to the high surface area at the interface between the obtained perovskite and hole-transport layers. The optimal perovskite solar cell exhibited an impressive power conversion efficiency (PCE) of 19.47%, as compared to that of the pristine cell (17.19%).
关键词: solar cells,Bulk heterojunction,light-harvesting,coral-like nanostructures,surface modification,perovskite
更新于2025-11-21 11:01:37
-
Broadband photodetector based on 3D architect of MoS2-PANI hybrid structure for high photoresponsive properties
摘要: MoS2-PANI hybrid structure were synthesized by insitu polymerization of hydrothermally synthesized MoS2 nanosheets with PANI for its application in photodetectors. Field-Emission Scanning Electron Microscopy (FESEM), High-Resolution Transmission Electron Microscopy (HRTEM), X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and UV-vis spectroscopy and were performed to characterize the synthesized sample. The optical sensor of MoS2-PANI nanosheets were fabricated and altogether studied using laser excitation wavelengths (λex): 635 nm (red), 785 nm (infra-red) and 1064 nm (near infra-red). The evaluated value of photoresponsivity of hybrid structure is quite high compared to the previously reported MoS2 nanosheets based optical sensor. At 785 nm, maximum photoresponsivity of 25 A/W is observed at fixed power density of 1.4 mW/mm2. The photoresponsive characteristics of MoS2-PANI hybrid structure were examined as a function of optical power density.
关键词: Photoresponsivity.,MoS2-PANI,Hydrothermal
更新于2025-11-21 11:01:37
-
Carbon quantum dots/TiO2 nanosheets with dominant (001) facets for enhanced photocatalytic hydrogen evolution
摘要: Carbon quantum dots/TiO2 nanosheets with a majority of (001) facet (CQDs/TiO2-001) samples are successfully prepared via a facile method. Compared to TiO2-001 and CQDs/P25, the synthesized CQDs/TiO2-001 presents a remarkably higher photocatalytic activity for H2 evolution with a considerable stability. XRD, XPS, HRTEM, FESEM, FTIR, Photoluminescence (PL) spectroscopy, Fluorescence spectroscopy and UV–visible reflectance spectroscopy are adopted to investigate the morphology, structure and properties of synthesized CQDs/TiO2-001. The mechanism of the improved photocatalytic activity over CQDs/TiO2-001 is also investigated. The results show that the improved photocatalytic activity over CQDs/TiO2-001 can be attributed to the synergistic effects of TiO2-001 and CQDs: the highly exposed (001) facets of TiO2-001 promote the transportation of photogenerated electrons and the loading of CQDs restrains the recombination of electrons-holes on (001) facets. Meanwhile, the visible-light absorption is extended because the CQDs serve as a photosensitizer and sensitize TiO2-001 through the newly formed TieOeC bond between the CQDs and TiO2-001.
关键词: Carbon quantum dots,TiO2,Photocatalytic H2 evolution,(001) facet
更新于2025-11-21 11:01:37
-
Strong Cathodoluminescence and Fast Photoresponse from Embedded CH3NH3PbBr3 Nanoparticles Exhibiting High Ambient-Stability
摘要: This study presents a comprehensive analysis of the strong cathodoluminescence (CL), photoluminescence (PL), and photoresponse characteristics of CH3NH3PbBr3 nanoparticles (NPs) embedded in a mesoporous nanowire template. Our study revealed a direct correlation between the CL and PL emissions from the perovskite NPs (Per NPs), for the first time. Per NPs are fabricated by a simple spin coating of perovskite precursor on the surface of metal-assisted-chemically-etched mesoporous Si NWs array. The Per NPs confined in the mesopores show blue shifted and enhanced CL emission as compared to the bare perovskite film, while the PL intensity of Per NPs dramatically high compared to its bulk counterpart. A systematic analysis of the CL/PL spectra reveals that the quantum confinement effect and ultra-low defects in Per NPs are mainly responsible for the enhanced CL and PL emissions. Low-temperature PL and time-resolved PL analysis confirm the high exciton binding energy and radiative recombination in Per NPs. The room temperature PL quantum yield of the Per NPs film on the NW template was found to be 40.5 %, while that of Per film was 2.8%. The Per NPs show improved ambient air-stability than the bare film due to the protection provided by the dense NW array, since dense NW array can slow down the lateral diffusion of oxygen and water molecules in Per NPs. Interestingly, the Si NW/Per NPs junction shows superior visible light photodetection and the prototype photodetector shows a high responsivity (0.223 A/W) with a response speed of 0.32 sec and 0.28 sec of growth and decay in photocurrent, respectively, at 2V applied bias, which is significantly better than the reported photodetectors based on CH3NH3PbBr3 nanostructures. This work demonstrates a low-cost fabrication of CH3NH3PbBr3 NPs on a novel porous NW template, which shows excellent photophysical and optoelectronic properties with superior ambient stability.
关键词: Perovskite Nanoparticles,PL QY enhancement,Porous Si Nanowires,Fast Photoresponse,CL Enhancement
更新于2025-11-21 11:01:37