在电子电工和精密光学领域,如何从复杂的光信号中精准提取所需信息,一直是工程师和技术人员面临的核心挑战。无论是工业检测中的精密成像,还是光纤通信系统的信号保真,亦或是激光加工中的能量控制,一个看似微小却至关重要的光纤元件——光学滤光镜,都扮演着不可或缺的角色。它的选择与应用直接关系到整个光电系统的性能、稳定性与精度。然而,面对市场上琳琅满目的滤光镜类型,许多从
顶刊高频之选
-
专业选型
-
正规认证
-
品质保障
严格把控产品质量,呈现理想的光电产品,确保每一件产品都能满足您的专业需求。
概述
参数
- 透镜形状 / Lens Shape : Spherical Lens
- 焦距 / Focal Length : 500 mm
- 焦距公差 / Focal Length Tolerance : ±1%
- 中心厚度 / Center Thickness : 2.3 mm
- 直径 / Diameter : 30 mm
- 基底/材料 / Substrate/Material : N-BK7
- 表面质量 / Surface Quality : 40-20 Scratch-Dig
规格书
请提供您的邮箱下载规格书
怎么称呼您
接收邮箱
AI 智能分析
该产品已被2篇SCI论文引用
基于平台30万篇光学领域SCI论文分析
-
利用光声显微镜全面表征爆炸性创伤性脑损伤中的脑血管功能障碍
爆炸性创伤性脑损伤 脑血管反应性 光声显微镜 氧代谢 血流动力学
爆炸性创伤性脑损伤(bTBI)是作战相关伤亡的主要原因之一。尽管学界重点关注了爆炸引发的神经元和轴突损伤,但脑血管(尤其是微血管)的并存功能障碍仍鲜为人知。本研究通过大鼠bTBI模型(爆炸超压:187.8±18.3千帕),利用光声显微镜量化了伤后4小时脑血流动力学与代谢变化——包括血流灌注、氧合度、流速、氧提取分数及氧代谢率,并评估了爆炸暴露对脑血管舒张刺激反应性的影响。通过血管分割技术,我们在单血管层面提取这些变化,揭示其与血管类型(动脉/静脉)及管径的关联。研究发现该压力水平的bTBI未引起脑血管管径、血流灌注、氧合度、流速、氧提取及代谢的显著基线改变,仅小静脉(<45微米)出现轻微血氧饱和度升高和大静脉(≥45微米)血流增加。相反,该爆炸暴露几乎完全消除了脑血管反应性,包括动脉扩张、血流上调及静脉血氧饱和度升高。本研究是目前对爆炸暴露下脑血管结构与生理响应最全面的评估。观察到的脑血管反应性损伤可能导致认知能力下降——因其与认知代谢需求及血管动态调节能力不匹配。此外,受损的脑血管反应性还会增加大脑对缺氧、缺血等代谢性损伤的易感性。
查看全文 > -
快报:基于主成分分析方法的提取动物脂肪激光诱导击穿光谱信号增强评估
激光诱导击穿光谱 LIBS 主成分分析 PCA 液体 动物脂肪 等离子体
本研究中,采用主成分分析(PCA)方法对两种不同冷冻方式处理的提取鸡脂肪、羊脂肪、牛脂肪及猪油的激光诱导击穿光谱(LIBS)信号进行分析。使用波长1064 nm、脉冲能量170 mJ、脉宽6 ns的掺钕钇铝石榴石(Nd:YAG)激光器对冷冻样品进行烧蚀,在靶面产生等离子体。激光束在不同点位进行30-60次烧蚀。液氮(LN2)冷冻法获得的提取鸡脂肪和羊脂肪LIBS信号更强,而冷冻柜冷冻法获得的提取牛脂肪和猪油LIBS信号更强。通过PCA将提取动物脂肪的LIBS光谱可视化为得分图,每种提取脂肪的数据点按烧蚀过程初期、中期、末期分为三组。得分图显示液氮法处理的三种冷冻提取动物脂肪数据点聚集更紧密。在三维得分图中,液氮法处理的提取鸡脂肪、羊脂肪、牛脂肪与猪油可实现97%方差贡献率的良好区分。液氮法产生的提取动物脂肪LIBS信号比冷冻柜法更稳定。
查看全文 >
-
智能医学工程实验方案
1. 实验设计与方法选择:本研究采用光声显微镜(PAM)评估爆炸性创伤性脑损伤(bTBI)大鼠模型的脑血管功能障碍。方法包括量化损伤后脑血流动力学和代谢变化,以及评估脑血管对血管扩张刺激的反应性。 2. 样本选择与数据来源:雄性Sprague Dawley大鼠(6-8周龄)随机分为对照组和bTBI组。bTBI组暴露于187.8±18.3 kPa的冲击波超压环境。 3. 实验设备与材料清单:多参数PAM系统包含纳秒脉冲激光器、偏振分束器、中性密度滤光片、光阑、聚光透镜、针孔、单模光纤、显微镜物镜、分束器、高速光电二极管、消色差双合透镜及定制环形超声换能器。 4. 实验流程与操作步骤:动物麻醉后置于高压激波管接受冲击暴露,随后通过PAM成像。使用乙酰唑胺(ACZ)注射评估脑血管反应性。 5. 数据分析方法:采用血管分割算法提取脑血流动力学和氧代谢相关定量值。统计分析包括非配对t检验和配对t检验。
获取完整方案 -
精密仪器实验方案
1. 实验设计与方法选择:采用主成分分析(PCA)对两种不同冷冻方法处理的提取动物脂肪的激光诱导击穿光谱(LIBS)信号进行分析。 2. 样本选择与数据来源:制备鸡脂肪、羊脂肪、牛脂肪和猪油样本,分别采用液氮(LN2)和冷冻柜方法冷冻。 3. 实验设备与材料清单:Nd:YAG激光器(Quantel Q-Smart 850)、光谱仪(CCS200)、光纤(Thorlabs)和平凸透镜(Thorlabs)。 4. 实验步骤与操作流程:用激光束在不同点位进行30-60次烧蚀,采集LIBS光谱并通过PCA分析。 5. 数据分析方法:利用PCA将LIBS光谱可视化为得分图,并比较发射线强度。
获取完整方案
厂家介绍
Thorlabs致力于以快速有效的服务,为客户供应高品质的光电产品及附属产品。索雷博, 光学平台, 光学元件, 位移台, 光纤跳线, 激光器, 二极管驱动, 宽谱光源, 光电探测, 光束分析, OCT成像, 成像系统, 压电陶瓷, 光电实验室
智推产品
动态资讯
-
激光器驱动厂家有哪些?行业巨头与创新先锋深度解析
2025-06-12 16:20:52
-
光电测温传感器
2025-10-05 12:50:52
-
光纤激光器买哪些品牌有性价比呢?
2025-08-20 21:20:53
-
压力传感器的验证需要什么要求和条件
2025-10-03 00:10:49
科学论文
相关产品
-
激光二极管专用光学透镜
光学透镜
Fisba
有效焦距: 200–1700μm 材质: 高折射率玻璃,n>1.8 覆盖波长范围: 430–1600nm
Fast Axis Collimator Lenses (FACs) 是激光二极管的关键组件,确保其在生产扩展中不会成为限制因素。
相关文章
-
-
在现代光电系统和高速通信网络中,集成光学元件扮演着至关重要的核心角色。对于电子工程师、光电研发人员乃至负责系统集成的电工而言,能否快速、准确地识别和理解各类集成光学元件,直接影响到电路设计、设备选型乃至整个配电系统中光电子部分的稳定运行。一张清晰的集成光学元件图片,往往比冗长的文字说明书更能直观地展示元件的物理结构、接口类型和在板卡上的布局。然而,行业内普遍
-
在现代电子电工领域,光源技术扮演着至关重要的角色,而发光二极管(LED)与激光无疑是其中的两大核心。无论是日常照明、设备指示,还是高端光纤元件通信与精密成像系统,理解它们的原理与差异,对于正确选型、优化设计及保障配电系统稳定运行都意义重大。许多工程师在面对具体应用场景时,常常困惑:是选择技术成熟、成本低廉的发光二极管,还是投资性能卓越、方向性极佳的激光光源?
-
在现代电子设备和工业系统中,运动感知技术扮演着越来越关键的角色,而陀螺仪传感器和加速度传感器作为核心的测量元件,其应用既存在重叠又各有侧重。许多工程师和产品开发者在选择传感器时常常困惑:陀螺仪传感器和加速度传感器在应用上有哪些相同与不同之处?理解这一问题不仅有助于优化系统设计,还能提升性能并降低成本。尤其在要求高精度的领域,如无人机控制、工业自动化、消费电子
加载中....
称呼
电话
单位名称
用途