在工业自动化和精密测量领域,激光位移传感器已成为不可或缺的电工工具。无论是检测生产线上的微小偏差,还是监控配电系统中设备的振动幅度,其高精度和非接触式测量的优势显著提升了效率与安全性。然而,面对市场上琳琅满目的型号(如基于激光二极管或光纤元件的产品),许多工程师在选型和应用中仍存在困惑。本文将深入解析激光位移传感器的工作原理、核心参数及典型场景,助您全面掌握
顶刊高频之选
-
专业选型
-
正规认证
-
品质保障
严格把控产品质量,呈现理想的光电产品,确保每一件产品都能满足您的专业需求。
概述
参数
- 反射镜类型 / Mirror Type : Longpass Mirror, Dichroic Mirror
- 反射镜形状 / Mirror Shape : Rectangular
- 基底/材料 / Substrate/Material : UV Fused Silica
- 反射镜厚度 / Mirror Thickness : 1.0 mm (0.04 Inch)
- 表面质量 / Surface Quality : 40-20 scratch-dig
规格书
请提供您的邮箱下载规格书
怎么称呼您
接收邮箱
AI 智能分析
该产品已被5篇SCI论文引用
基于平台30万篇光学领域SCI论文分析
-
采用非周期性光子筛的超薄广角大面积数字三维全息显示器
3D可视化 光子筛 宽视角 波前调制 全息显示
全息显示器无需特殊眼镜即可为多位用户提供3D视觉体验。通过精确调控光场,全息显示器能呈现具有完整运动视差和连续深度线索的逼真3D场景。然而受波前调制实际限制,现有全息显示器尚无法生成此类场景——当前波前调制器有限的衍射角与像素数量导致生成的3D场景尺寸小且可视角度窄。我们提出一种平板波前调制器,可显示大尺寸动态全息图像并具备宽视角特性。具体而言,该方案将具有大角度衍射能力的超高容量非周期光子筛与商用液晶显示面板相结合来生成全息图像。除宽视角与大屏幕尺寸外,该波前调制器还支持多色投影且体积小巧,这意味着有望在轻薄设备上实现全息显示功能。
查看全文 > -
用于量子点编码微珠阵列生物检测的光谱-光学镊子辅助荧光复用系统
珠阵列 量子点编码 光镊 多重生物检测
作为一种高效的多重生物分子检测工具,微珠阵列可实现无需分离的多目标检测,适用于分析活体生物中抗原、抗体等珍贵稀缺样本。本研究提出一种光谱光学镊子辅助的荧光多重检测系统用于分析生物分子偶联微珠阵列。通过光学镊子将微珠捕获并锁定于焦点处接受激发,提供稳定优化的检测条件。移动系统焦点并扫描样品载玻片,实现多重检测后量子点编码微珠阵列的发射光收集。光谱仪采集记录荧光发射光谱,通过识别解码峰位置并计算发射光谱标记信号强度,完成对目标物的定性与定量检测。概念验证研究表明,该系统可对单一样本中的多种抗-IgG进行多重检测,检测限达1.52 pM(线性范围0.31-10 nM)。进一步优化实验条件后,采用夹心法实现对人血清中目标IgG的特异性检测,检测限低至0.23 pM(线性范围0.88-28 pM),证实了该方法在实际样本中的实用价值。
查看全文 > -
选择性激光熔化的原位光学发射光谱分析
金属增材制造 光学发射光谱 原位监测 粉末床熔融
选择性激光熔化(SLM)作为一种粉末床增材制造工艺,其局部加工条件的差异可能导致缺陷并引发零件失效。SLM工艺特性允许对加工过程中从零件表面发射的辐射信号(包括激发合金元素的光学发射)进行原位监测。通过光学发射光谱(OES)测量发射光的频谱成分,可以深入了解SLM加工过程中汽化激发物种的化学组成及相对强度。本文报道了研究利用原位OES获取SLM加工局部条件信息的贡献:将光谱仪分光至SLM系统激光束路径中,测量304L不锈钢加工时熔池和羽流发射的可见光。该在线配置可不受激光扫描位置影响实现信号采集。通过关联光谱信息与不同构建条件(即工艺参数、构建腔室气氛类型及压力)下SLM试样的熔池尺寸特征,本文讨论了特定构建腔室条件下实施OES的局限性。这些成果是OES应用于SLM零件质量评定与控制领域的初步进展。
查看全文 >
-
光电信息科学与工程实验方案
1. 实验设计与方法选择:该系统采用透射式LCD面板结合非周期性光子筛来调制波前。光子筛由随机取向的微孔构成,这些微孔能产生大角度衍射光,从而增大全息图像的可视角度。LCD像素与微孔的一一对应关系实现了光场的独立调控。 2. 样本选择与数据来源:光子筛通过常规光刻和电子束写入工艺制备。使用不同波长的激光照射生成并采集全息图像(如螺旋体、四面体、旋转立方体等)。 3. 实验设备与材料清单:LCD面板(LCX017AL,索尼)、激光器(绿光532nm/红光639nm/蓝光473nm)、熔融石英基底镀钛薄膜的光子筛、CCD相机(Lt365R,Lumenera)、物镜(UPlan FLN 40×/UPLSAPO 4×,奥林巴斯)、管镜(焦距100mm)、二向色镜(DMLP505/DMLP550,Thorlabs)、用于成像的可移动载物台。 4. 实验流程与操作步骤:将LCD面板与光子筛对齐贴合,激光束照射面板后显示最佳相位图案以在目标位置形成焦点。通过搭载于可移动载物台的4f望远镜成像系统采集图像,观察运动视差与不同视角效果。采用泽尼克多项式进行像差校正。 5. 数据分析方法:基于光程差代数计算聚焦相位值。对比度因子以全息图像强度与背景噪声的比值测定。通过半高宽测量和空间频率图谱分析可视角度及焦点尺寸。
获取完整方案 -
精密仪器实验方案
1. 实验设计与方法选择:本研究采用自制光谱光学镊子系统捕获并激发量子点编码微珠以实现荧光多重检测。光学镊子提供非接触式捕获和稳定的激发条件。 2. 样本选择与数据来源:聚苯乙烯微珠(直径10μm和5μm)编码有CdSe/ZnS量子点(525、565、585、625nm),并偶联特定生物探针(如抗IgG抗体)。样本包括含不同浓度目标生物分子的PBS溶液及人血清。 3. 实验设备与材料清单:设备包含405nm单模激光器、Olympus 100×油镜(NA=1.30)、二向色镜(Thorlabs DMLP500)、分束器、透镜组(L1-L5)、照明LED、矩阵CCD(ZWO ASI178MC)、自制光谱仪、三维平移台。材料包括聚苯乙烯微珠、量子点、IgG抗体、抗IgG抗体、PEI、PSS、戊二醛、人血清,以及来自Nano-Micro研究中心、武汉嘉源量子点技术开发公司、Bioss生物技术公司、Solarbio生命科学、阿拉丁工业公司等供应商的各类化学试剂。 4. 实验流程与操作步骤:通过自修复法制备量子点编码微珠并进行表面生物探针修饰,用于免疫检测(一步免疫吸附或夹心法)。光学系统在激光焦点处捕获微珠,用405nm激光激发量子点,通过光谱仪和CCD收集荧光发射信号,并扫描样品载玻片分析多个微珠。 5. 数据分析方法:分析荧光光谱以识别解码峰(定性检测)和标记峰(定量检测),测量强度并拟合标准曲线进行浓度响应分析,基于空白信号和标准差计算检测限。
获取完整方案 -
增材制造工程实验方案
1. 实验设计与方法选择:研究将光谱仪插入SLM系统激光光路中,测量加工过程中熔池和羽流发出的可见光。 2. 样本选择与数据来源:在不同条件下(激光功率、构建腔室气氛类型及压力)处理304L不锈钢粉末单层。 3. 实验设备与材料清单:使用自制的SLM系统,配备IPG光子公司YLR-500连续波光纤激光器和Andor科技公司SR-750光谱仪。 4. 实验流程与操作步骤:激光以恒定扫描速度和搭接间距进行光栅式扫描,采集并处理OES数据以去除炽热背景。 5. 数据分析方法:对处理后的OES信号进行层区域平均以生成代表性发射光谱,通过光学显微镜测量熔池尺寸并与发射线强度相关联。
获取完整方案
获取完整实验方案
我们还有2 个针对不同应用场景的完整实验方案,包括详细设备清单、连接示意图和数据处理方法。
联系获取完整方案
厂家介绍
Thorlabs致力于以快速有效的服务,为客户供应高品质的光电产品及附属产品。索雷博, 光学平台, 光学元件, 位移台, 光纤跳线, 激光器, 二极管驱动, 宽谱光源, 光电探测, 光束分析, OCT成像, 成像系统, 压电陶瓷, 光电实验室
智推产品
动态资讯
-
光谱仪的作用和功能
2025-07-27 08:00:31
-
光纤激光焊接机原理结构图
2025-10-23 23:40:37
-
星间激光通信???/a>
2025-11-26 06:30:43
-
共路干涉仪和非共路干涉仪的区别与联系
2025-10-24 14:40:49
科学论文
相关产品
-
PS 975 M-M01安装式25.4mm后向反射器
光学反射镜
索雷博
有效孔径: ?17.8mm 直径公差: +0/-0.1mm 表面质量: 40-20 Scratch-Dig
PS975M-M01是一款安装在直径为25.4mm的反射器,具有高精度光学性能和耐用的结构设计。
相关文章
-
-
在现代电子设备和系统的设计与维护中,一个稳定可靠的电源是确保其正常工作的基石。无论是精密的半导体器件还是复杂的配电系统,电压的波动都可能导致性能下降甚至硬件损坏。那么,什么是直流稳压电源?简单来说,它是一种能将不稳定的输入电压(如交流电或波动直流)转换为稳定、纯净的直流输出电压的电子设备。其重要性不言而喻:它为敏感负载提供“清洁”的能量,防止过压、欠压或噪声
-
在电子电工、半导体制造以及环保水处理等诸多工业领域,气动隔膜泵因其防爆、耐腐蚀及自吸能力强等优点,成为流体输送的关键设备。然而,若操作不当,不仅会严重影响生产效率,甚至可能损坏与之联动的精密配电系统或半导体器件生产线,造成巨大损失。因此,全面掌握气动隔膜泵使用注意事项,是每一位现场电工、设备维护工程师及管理人员的必备技能。本文将深入探讨其核心操作规范与维护要
-
在现代高速光通信与无线传输系统中,如何高效利用有限的频谱资源始终是核心技术挑战。波分复用(WDM)与频分复用(FDM)作为两种主流的复用技术,虽名称相似,却在原理、应用场景及实现方式上存在显著差异。准确理解波分复用和频分复用的区别,对于电子电工领域的工程师正确选择光纤元件、设计配电系统以及优化通信架构至关重要。本文将深入解析这两种技术的本质差异,并探讨其在实
加载中....
称呼
电话
单位名称
用途