修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

全部产品分类
MPD399V-M01 光学反射镜

MPD399V-M01

分类: 光学反射镜

厂家: 索雷博

产地: 美国

型号: MPD399V-M01

更新时间: 2024-08-29T22:46:04.000Z

产品价格:

立即查看报价

3 Inch 90° Off-Axis Parabolic Mirror with 3.2 mm Hole, Prot. Gold, RFL = 9 Inch

下载规格书 下载规格书 立即咨询 获取报价 获取报价
收藏 收藏

顶刊高频之选

  • 专业选型 专业选型
  • 正规认证 正规认证
  • 品质保障 品质保障

严格把控产品质量,呈现理想的光电产品,确保每一件产品都能满足您的专业需求。

概述

Thorlabs Inc的MPD399V-M01是一款光学反射镜,波长范围为800 nm至20μm,反射镜厚度为88.2 mm(3.47英寸),反射镜直径为76.2 mm(3英寸)。有关MPD399V-M01的更多详细信息,请联系我们。

参数

  • 反射镜类型 / Mirror Type : Off-Axis Parabolic Mirror, Parabolic Mirror
  • 反射镜形状 / Mirror Shape : Parabolic
  • 反射焦距公差 / Reflected Focal Length Tolerance : ±1%
  • 基底/材料 / Substrate/Material : Aluminum
  • 镀膜材料 / Coating Material : Gold
  • 反射镜直径 / Mirror Diameter : 76.2 mm (3 Inch )
  • 表面质量 / Surface Quality : 40-20 scratch-dig

规格书

请提供您的邮箱下载规格书

怎么称呼您

接收邮箱

发送申请

AI 智能分析

SCI论文引用分析

该产品已被3篇SCI论文引用

基于平台30万篇光学领域SCI论文分析

  • 基于漫反射的单端激光吸收传感器用于煤油燃料燃烧室中H2O的温度和浓度测量
    单端 湍流环境 燃烧诊断 激光吸收传感 煤油燃料燃烧室

    本文介绍了一种基于漫反射壁面信号的小型单端激光吸收传感器的设计、优化及验证方法,用于煤油燃料航空燃烧室内的温度与H2O浓度测量。此类严苛实际燃烧环境中的激光测量面临光束偏转强、信噪比低及光学通路受限等挑战。我们详细阐述了采用离轴抛物面镜(带孔径)作为收发光学元件、燃烧室积碳壁面作为漫反射体的单端光学构型特性与优化流程。使用1.4微米近红外分布反馈式二极管激光器(1kHz扫描频率进行直接吸收检测),通过探测两条H2O吸收谱线实现浓度与温度测量。结合光学系统设计与自适应Savitzky-Golay信号处理算法抑制噪声并提升信噪比。该传感器在煤油燃料旋流燃烧室的实际工况下完成验证:尽管反射激光强度仅约50微瓦,仍获得高保真信号,实现单次扫描H2O浓度检测限122 ppm·m·Hz^-1/2。原位时域测量显示当全局当量比在0.2至0.45变化时,温度范围约1100-1300K,H2O浓度约8%-12%。结果呈现预期趋势,且相比对比热电偶展现出更快的响应速度与更小的延迟。该现场验证直接证明了基于漫反射的单端传感器系统在发动机燃烧室环境中的鲁棒性与可靠性。

    查看全文 >
  • 高功率飞秒激光脉冲作用下铁靶表面预等离子体的干涉显微镜研究
    干涉显微镜 飞秒脉冲 电子加速机制 热电子

    采用对比度为10^7的Cr:镁橄榄石激光系统发射飞秒脉冲,通过时间分辨干涉显微镜测量了在强度为10^16 W/cm2的飞秒激光脉冲辐照下,块体铁靶表面形成等离子体的特征扩散尺度。实验证明该技术在相关测量中具有高效性。实验表明,受激光脉冲作用后,密度超过临界值的等离子体层位移不超过30纳米。

    查看全文 >
  • 用于研究高功率飞秒激光脉冲形成的非理想等离子体的时间分辨干涉显微镜
    飞秒激光脉冲 时间分辨干涉显微镜 等离子体密度不均匀性 非理想等离子体

    展示了在强度为10^16 W/cm2的飞秒激光脉冲作用下,块状铁靶表面等离子体密度特征尺寸的测量结果。研究采用时间分辨干涉显微技术进行,使用铬:镁橄榄石激光系统产生的具有10^7高时间对比度的飞秒激光脉冲。所选技术的有效性得到验证,测得等离子体不均匀性尺寸小于30纳米。

    查看全文 >
实验方案推荐
AI分析生成
  • 精密仪器实验方案

    1. 实验设计与方法选择:采用单端光学配置,使用带孔离轴抛物面镜作为发射接收光学元件,燃烧室焦黑壁面作为漫反射体。使用近红外分布式反馈二极管激光器(波长约1.4微米,扫描频率1kHz)进行直接吸收检测,通过探测两条水分子跃迁谱线实现浓度和温度测量。采用光学系统设计和自适应Savitzky-Golay信号处理算法进行噪声抑制与信噪比优化。 2. 样本选择与数据来源:清华大学APL实验室的煤油燃料旋流燃烧室,其燃烧特性与航空煤油Jet-A高度相似。 3. 实验设备与材料清单:NTT电子公司DFB二极管激光器(工作波长1398nm,输出功率约15mW)、Thorlabs公司镀金离轴抛物面镜(MPD249V-M01,带通孔)、2°楔形石英窗、Spectrogon公司窄带滤光片(NB-1398-010nm)、Thorlabs公司光电探测器(PDA50B-EC)、硅标准具(自由光谱范围0.03438cm?1)。 4. 实验流程与操作步骤:通过软件控制函数发生器以1kHz锯齿波扫描激光波长来获取目标吸收谱线。激光束经镀金离轴抛物面镜(带通孔)和2°楔形石英窗导入燃烧室,在距喷嘴下游约240mm的对向壁面形成光路。 5. 数据分析方法:采用自适应Savitzky-Golay(S-G)平滑算法处理吸收信号。

    获取完整方案
  • 物理学实验方案1

    1. 实验设计与方法选择:采用时间分辨干涉显微镜测量等离子体扩散的特征尺度。该技术使用Cr:镁橄榄石激光系统发射的飞秒脉冲,其强度对比度为10^7。 2. 样本选择与数据来源:以块状铁靶材作为样本,通过飞秒激光脉冲进行辐照。 3. 实验设备与材料清单:包括基于主动Cr:镁橄榄石元件的太瓦级飞秒红外激光系统、延迟线、空间滤波器、一组中性滤光片、微透镜、抛物面镜、真空腔室及CCD相机。 4. 实验流程与操作步骤:采用泵浦-探测方案,将激光辐射分为泵浦光束和探测光束,通过调节泵浦与探测脉冲间的延迟时间研究预等离子体形成与膨胀的动力学过程。 5. 数据分析方法:通过分析复反射系数相位的空域分布来确定等离子体层的变化。

    获取完整方案
  • 物理学实验方案2

    1. 实验设计与方法选择:本研究采用时间分辨干涉显微镜技术,研究飞秒激光脉冲作用下铁靶表面的等离子体形成与扩展过程。 2. 样本选择与数据来源:使用具有特定尺寸和表面粗糙度的块状圆柱形铁样品。 3. 实验设备与材料清单:包括铬:镁橄榄石激光系统、迈克尔逊干涉仪、CCD相机(SensiCam QE,PCO)及各类光学元件。 4. 实验流程与操作步骤:实验设置采用泵浦-探测方案,包含精确延迟控制、空间滤波及干涉图记录。 5. 数据分析方法:利用干涉图处理的傅里叶方法分析反射探测辐射的相位变化。

    获取完整方案

厂家介绍

Thorlabs致力于以快速有效的服务,为客户供应高品质的光电产品及附属产品。索雷博, 光学平台, 光学元件, 位移台, 光纤跳线, 激光器, 二极管驱动, 宽谱光源, 光电探测, 光束分析, OCT成像, 成像系统, 压电陶瓷, 光电实验室

相关产品

图片 名称 分类 制造商 参数 描述

相关文章

  • 激光位移传感器,全攻略!

    在工业自动化和精密测量领域,激光位移传感器已成为不可或缺的电工工具。无论是检测生产线上的微小偏差,还是监控配电系统中设备的振动幅度,其高精度和非接触式测量的优势显著提升了效率与安全性。然而,面对市场上琳琅满目的型号(如基于激光二极管或光纤元件的产品),许多工程师在选型和应用中仍存在困惑。本文将深入解析激光位移传感器的工作原理、核心参数及典型场景,助您全面掌握

  • 什么是直流稳压电源?有哪些应用种类?

    在现代电子设备和系统的设计与维护中,一个稳定可靠的电源是确保其正常工作的基石。无论是精密的半导体器件还是复杂的配电系统,电压的波动都可能导致性能下降甚至硬件损坏。那么,什么是直流稳压电源?简单来说,它是一种能将不稳定的输入电压(如交流电或波动直流)转换为稳定、纯净的直流输出电压的电子设备。其重要性不言而喻:它为敏感负载提供“清洁”的能量,防止过压、欠压或噪声

  • 气动隔膜泵使用注意事项

    在电子电工、半导体制造以及环保水处理等诸多工业领域,气动隔膜泵因其防爆、耐腐蚀及自吸能力强等优点,成为流体输送的关键设备。然而,若操作不当,不仅会严重影响生产效率,甚至可能损坏与之联动的精密配电系统或半导体器件生产线,造成巨大损失。因此,全面掌握气动隔膜泵使用注意事项,是每一位现场电工、设备维护工程师及管理人员的必备技能。本文将深入探讨其核心操作规范与维护要

  • 波分复用和频分复用的区别

    在现代高速光通信与无线传输系统中,如何高效利用有限的频谱资源始终是核心技术挑战。波分复用(WDM)与频分复用(FDM)作为两种主流的复用技术,虽名称相似,却在原理、应用场景及实现方式上存在显著差异。准确理解波分复用和频分复用的区别,对于电子电工领域的工程师正确选择光纤元件、设计配电系统以及优化通信架构至关重要。本文将深入解析这两种技术的本质差异,并探讨其在实

立即咨询

加载中....

获取实验方案

称呼

电话

+86

单位名称

用途