在电子制造与研发领域,如何精准分析材料的分子结构并检测微小缺陷一直是行业痛点。拉曼光谱仪的作用正是解决这一难题的核心技术——它通过激光与物质分子振动能级的相互作用,提供非接触、无损的化学成分"指纹图谱"。从半导体晶圆的质量控制到新型光纤元件的材质验证,该技术已成为现代电子工业不可或缺的分析工具。本文将深入解析拉曼光谱仪在电子电工行业的具体应用场景,并分享提升
AvaSpec-ULS2048-USB2-VA-50
分类: 光谱仪
厂家: Avantes
产地: 荷兰
型号: AvaSpec-ULS2048-USB2-VA-50
更新时间: 2024-08-29T12:13:51.000Z
立即查看报价
Fiber-optic Spectrometer, 75 mm AvaBench, 3648 pixel CCD detector, USB powered, high-speed USB2 interface, incl. AvaSoft-Basic, USB interface cable. Specify grating, wavelength range and options
顶刊高频之选
-
专业选型
-
正规认证
-
品质保障
严格把控产品质量,呈现理想的光电产品,确保每一件产品都能满足您的专业需求。
概述
参数
- 应用 / Applications : multichannels systems, perfectly suited, industrial
- 测量技术 / Measuring Techniques : UV-VIS-NIR measurements
- 光谱仪类型 / Spectrometer Type : Modular, Portable
- 光谱分辨率 / Spectral Resolution : 2.4 nm
- 谱带 / Spectrum Band : VIS/NIR
规格书
AI 智能分析
该产品已被3篇SCI论文引用
基于平台30万篇光学领域SCI论文分析
-
用于二氧化碳分解的太阳能滑弧等离子体反应器:设计与表征
化学合成 辐射吸收 太阳能燃料 大气压非平衡等离子体 太阳能接收器-反应器
利用可再生能源(尤其是太阳能)将二氧化碳(CO?)等低价值原料转化为高价值产品,既能满足日益增长的燃料和化学品需求,又可减少环境排放。本文提出一种配备滑动弧放电装置(glidarc)的直接太阳能接收-反应器,有望实现更高效、连续运行的太阳能热化学合成。反应器腔室内的非平衡等离子体可增强气相原料对太阳能的吸收,从而提升化学转化效率。此外,依靠电能维持等离子体的特性可补偿太阳辐射输入的波动。 研究评估了两种常压条件下用于CO?分解的太阳能-滑动弧反应器构型:轴径向流动(AXR)与反向涡流(RVX)。前者能更精准控制停留时间但太阳-等离子体相互作用有限;后者虽增强相互作用,却需更高流速约束等离子体而导致停留时间缩短。通过计算流体动力学(CFD)模型模拟流道与停留时间以指导反应器设计与运行。模拟不同反应器朝向(模拟实地工况)下的等离子体体积显示,AXR构型比RVX设计产生更大等离子体体积。净吸收测试(评估太阳-等离子体相互作用程度)表明:RVX构型太阳能净吸收率达18%,AXR为7%(无等离子体时为0%)。尽管太阳能吸收较低,AXR构型因支持更短停留时间操作,实现了高达4.5%的CO?均相气相分解(无催化剂条件下),表现更优。结果表明太阳能-等离子体直射接收反应器为太阳能热化学合成提供了有效途径。
查看全文 > -
利用船载MAX-DOAS观测获取东海对流层NO?、SO?和HCHO数据并与OMI、OMPS卫星数据对比
二氧化氮 二氧化硫 臭氧监测仪 多轴差分吸收光谱仪 臭氧层监测仪 基于船舶的观测 甲醛 东海
本研究于2017年6月在东海海域开展了船载多轴差分光学吸收光谱(MAX-DOAS)观测。通过差分光学吸收光谱技术从实测光谱中反演了二氧化氮(NO?)、二氧化硫(SO?)和甲醛(HCHO)的对流层斜柱密度(SCDs)。采用简单几何法将15°仰角观测的各痕量气体SCDs转换为对流层垂直柱密度(VCDs)。航测期间,东海海域海洋环境NO?、SO?和HCHO的平均VCDs分别为6.50×101?分子/cm2、4.28×101?分子/cm2和7.39×101?分子/cm2。船载MAX-DOAS痕量气体VCDs数据与臭氧监测仪(OMI)及臭氧成像和廓线仪套件(OMPS)卫星观测进行了对比:每日OMI NO? VCDs与船测数据相关性良好(相关系数R=0.83);OMPS卫星与船测的SO?和HCHO VCDs也呈现较好一致性(R值分别为0.76和0.69)?;诓煌鼋遣饬康牟罘中敝芏龋―SCDs),采用最优估算法获取了这些痕量气体的垂直廓线,其典型分布特征显示:远离长三角大陆区的清洁海洋边界层中,NO?、SO?和HCHO浓度均较低(<3、<3和<2 ppbv)。值得注意的是,船行路线沿线间歇性出现SO?浓度升高现象,MAX-DOAS观测表明这主要源于邻近船舶排放。结合船载臭氧激光雷达测量,通过HCHO/NO?比值垂直廓线(该参数对NO?浓度变化敏感)探讨了臭氧(O?)生成机制。本研究深化了对东海海域海洋边界层主要空气污染物的认知,也为长三角等沿海地区制定船舶排放管控政策提供了科学依据。
查看全文 > -
基于D形光纤的表面等离子体共振传感器,采用Fiberbench旋转波片检测铅离子
铅离子 纳米复合材料 还原氧化石墨烯 FiberBench 表面等离子体共振 偏振控制器 D型光纤
本文介绍了一种采用FiberBench旋转波片实现传感器应用的D形光纤。该设计传感器利用表面等离子体共振(SPR)技术检测水介质中的铅离子?;诠庀说腟PR传感器采用双层传感芯片设计,将D形光纤抛光区域涂覆还原氧化石墨烯-磁赤铁矿纳米复合材料与1-乙基-3-(3-二甲氨基丙基)碳二亚胺盐酸盐/N-羟基琥珀酰亚胺复合传感层。通过波长与强度偏移量研究了不同浓度下的传输响应曲线。结合该传感层后,可通过波长与强度询问法轻松检测Pb2+。传感器在0.3 ppb铅离子浓度下即呈现可识别的强度偏移,基于波长偏移的检测限为1 ppm。铅离子浓度灵敏度达0.116 nm/ppm,准确度为19.1×10?4。利用FiberBench旋转波片通过SPR调控传输曲线的深度与宽度。该传感器在静态水环境中展现出高精度、高灵敏度及实时检测特性。
查看全文 >
-
新能源科学与工程实验方案
1. 实验设计与方法选择:研究涉及设计两种反应器构型(轴-径向流和逆涡流),以最大化太阳-等离子体相互作用及等离子体-气体相互作用。采用计算流体动力学(CFD)模型分析流路与停留时间。性能指标包括太阳辐射吸收效率、转化效率及净能量效率。 2. 样品选择与数据来源:使用未稀释的二氧化碳(CO?)气体作为原料。数据采集自包含高通量太阳模拟器与等离子体生成的实验装置。 3. 实验设备与材料清单:包括太阳模拟器、流量控制器、光学发射光谱仪、气相色谱仪、高速摄像机、单反相机,以及由不锈钢制成并配备铜电极与石英组件的反应器。 4. 实验流程与操作步骤:非日照测试用于表征等离子体行为;日照测试评估太阳-等离子体相互作用及CO?分解情况。收集并分析光谱与气体样本。 5. 数据分析方法:通过图像处理估算等离子体体积,利用光谱分析测定吸收率,采用气相色谱法评估转化效率,并对数据进行统计分析。
获取完整方案 -
应用物理学实验方案
1. 实验设计与方法选择:2017年6月在东海区域开展船载MAX-DOAS观测,通过差分光学吸收光谱技术从实测光谱中反演获取对流层二氧化氮(NO?)、二氧化硫(SO?)和甲醛(HCHO)的斜柱密度(SCD)。 2. 样本选取与数据来源:科考船主要航行于长三角周边海域。 3. 实验设备与材料清单:采用集成式全自动MAX-DOAS仪器,包含紫外光谱仪、一维CCD探测器及步进电机驱动望远镜。 4. 实验流程与操作规范:望远镜按3°、5°、7°、10°、15°、30°和90°仰角序列扫描,单次光谱测量时长约30秒。 5. 数据分析方法:利用QDOAS光谱拟合软件套件处理实测散射太阳光光谱。
获取完整方案 -
光电信息科学与工程实验方案
1. 实验设计与方法选择:本研究采用配备偏振控制器的D型光纤SPR装置以提升传感器性能,利用表面等离子体共振效应检测水中的Pb2+离子。 2. 样本选择与数据来源:制备并测试了不同浓度的Pb2+水溶液,传感层为还原氧化石墨烯(rGO)与磁赤铁矿(Fe2O3)的纳米复合材料,通过EDC/NHS交联。 3. 实验设备与材料清单:设备包括白光源(Avantes)、FiberBench型号FB-51(Thorlabs)、D型光纤(Phoenix Photonics)及光谱仪(AvaSpec-ULS2048L-USB2-UA-RS Avantes),材料包含rGO/Fe2O3纳米复合材料与EDC/NHS。 4. 实验流程与操作步骤:D型光纤依次镀覆金膜和传感层,通过分析不同Pb2+浓度下的波长与强度偏移来研究传输响应曲线。 5. 数据分析方法:基于SPR曲线的波长偏移量与半高全宽(FWHM)计算灵敏度与准确度。
获取完整方案
厂家介绍
智推产品
动态资讯
-
磁力仪的工作原理,具体条件速看!
2025-08-13 13:00:36
-
三相异步电动机主要类型有哪些?怎么分类?
2025-09-24 18:01:07
-
声光调制器的作用
2025-11-05 02:50:39
-
家家用激光设备微孔机加工
2025-11-03 20:10:44
科学论文
相关产品
-
4200-SCS热载体系统
光谱仪
Keithley Instruments Inc
漏电流: 测量晶体管处于关断状态时的漏电流 阈值电压: 在指定漏电流下的阈值电压 跨导: 在指定漏电流下的跨导
Keithley 4200-SCS Hot Carrier System是一款用于测试MOS晶体管热载流子退化的设备,能够在晶圆生产后立即提供准确的退化测试结果。
-
AERIS 紧凑型 X 射线衍射仪
光谱仪
ASD Inc Div of Malvern Panalytical Inc
样品加载方式: External sample loading 样品托盘: Variety of full-sized sample holders capable meeting all requirements 样品更换方式: Choose between a manual loading dock, 6-position sample changer, or 67-position high-capacity sample changer
Aeris是一款高精度台式XRD系统,能够在五分钟内提供精准的分析结果,支持0D、1D和2D检测器选项,并具有灵活的测量配置。
-
FT-IR 光谱仪
光谱仪
ARCoptix
分束器材料: CaF2 分束器材料: CaF2 分束器材料: ZnSe
ARCoptix OEM011是一款灵活的光谱仪产品,作为OEM010系列的替代方案。其主??榕浔改谥霉庠矗⊿iC global),具有温度调节功能,并采用永久对准的干涉仪系统。TE-MCT探测器被移至外部???,非常适合需要采样系统(短路径气体池、净化体积等)的配置。两个??榫汕崴晒潭ㄔ诠庋姘迳?,并支持30mm笼式系统杆以便快速原型设计。
-
UV-NIR 光谱仪
光谱仪
BaySpec
光栅: Concave Holographic
BaySpec的SuperGamut?系列UV-NIR光谱仪设计用于解决实际应用中的挑战,提供卓越性能、长期可靠性和紧凑尺寸。该产品采用高效凹面全息衍射光栅作为光谱分散元件,并使用超灵敏CCD阵列探测器进行检测,支持高速并行处理和连续光谱测量。
-
IRAffinity-1 红外光谱仪
光谱仪
Shimadzu
光学系统: 干涉仪动态准直光学系统 光源: 陶瓷光源 探测器: DLATGS检测器
IRAffinity-1是一款紧凑型傅里叶变换红外光谱仪,具有高灵敏度和性能,适用于广泛的分析需求。
相关文章
-
-
在当今高速发展的数字时代,网络数据传输的速率和距离是构建高效配电系统与通信基础设施的核心。其中,光纤多模传输距离作为一个关键性能指标,直接影响到数据中心、企业局域网及工业自动化等场景的部署成本与方案选择。多模光纤因其较大的芯径,易于连接且成本相对较低,被广泛应用于短距离通信。然而,其传输距离受限于模态色散等物理特性,如何最大化并准确评估其有效传输距离,是每一
-
在构建或升级企业网络、数据中心乃至智能配电系统时,选择合适的光纤类型是确保通信带宽与传输距离的关键基础。光纤多模与单模怎么区分,是每一位网络工程师、弱电电工和系统集成商都必须掌握的核心知识。错误的选择不仅会导致信号衰减、网络性能不达标,更可能因后期更换而带来巨大的时间和成本浪费。理解它们的本质差异,有助于为不同的应用场景选择最经济高效的解决方案,这对于整个通
-
在自动化浪潮席卷制造业的今天,机器视觉系统如同设备的“眼睛”,而其中,机器视觉光源类型的选择,往往是决定这双“眼睛”能否“看得清”、“看得准”的首要因素。许多工程师在搭建或优化视觉系统时,常常困惑于为何高分辨率的相机和先进的算法依然无法稳定识别目标。问题的根源,很大程度上就出在光源上。合适的光源能够凸显被测物体的特征,抑制不必要的背景干扰,为后续的成像和处理
加载中....
称呼
电话
单位名称
用途