在现代光电系统和电子电工设备中,光学元件名称的准确识别与理解是确保系统设计、维护及优化的基石。无论是构建精密的光纤通信网络,还是调试复杂的激光加工设备,工程师和技术人员若对各类光纤元件、透镜、滤光片等关键部件的命名规则与功能特性模糊不清,极易导致选型错误、性能下降甚至系统故障。随着半导体器件与光电技术的深度融合,掌握规范的光学元件名称不仅关乎技术沟通的效率,
顶刊高频之选
-
专业选型
-
正规认证
-
品质保障
严格把控产品质量,呈现理想的光电产品,确保每一件产品都能满足您的专业需求。
概述
参数
- 光纤模式 / Fiber Mode : SMF/PMF/MMF
- 应用 / Application : Broadband Light Source, Fiber Optic Sensor (FOS) System, Biomedical Imaging Device, OCT Diagnostic System
应用
1. 宽带光源 2.光纤传感系统 3.生物医学成像设备 4.光学相干断层扫描诊断系统
特征
1.宽光谱带宽 2.非常低的光谱波动 3.单?;蚱癖3止庀酥械母呤涑龉β?/p>
详述
规格书
AI 智能分析
该产品已被1篇SCI论文引用
基于平台30万篇光学领域SCI论文分析
-
具有高动态范围的散斑增强棱镜光谱仪
光谱学 散斑 棱镜
我们展示了一种新型光谱仪设备,具有宽波长范围和高分辨率特性。该设备基于传统棱镜光谱仪改进而成,但通过引入额外的散射介质,在探测器阵列上生成与波长相关的散斑图案。棱镜与散射介质的协同使用可同时提升分辨率和波长覆盖范围。相比传统棱镜光谱仪,这种生成的散斑图案能显著提高分辨率(最高达100倍)和动态范围。采用CCD相机实现的本光谱仪,在855纳米中心波长下实现了17皮米分辨率,756.5纳米波长范围内展现出约44,500的动态范围。若使用更大面积的探测器阵列和具有更窄光谱相关函数的散射介质,动态范围还可进一步提升。经过后续开发,该设备有望应用于多种光谱分析场景,例如光学相干断层扫描中视网膜层的深度成像。
查看全文 >
-
光电信息科学与工程实验方案
1. 实验设计与方法选择:该光谱仪结合了用于光谱-空间映射的棱镜和产生波长依赖性散斑图案的散射介质。 2. 样本选择与数据来源:使用可调谐激光源进行校准,并采用光纤耦合的超辐射发光二极管进行重建。 3. 实验设备与材料清单:包括柱面透镜、狭缝、棱镜、CCD相机以及多种散射体(纳米颗粒-环氧树脂混合物、磨砂玻璃、胶带、素描纸、羊皮纸)。 4. 实验步骤与操作流程:光被准直后聚焦到散射层上,再次准直并通过棱镜,在CCD相机上形成每个波长的聚焦线。 5. 数据分析方法:利用波长依赖性散斑图案和奇异值分解(SVD)进行光谱重建以降低噪声。
获取完整方案
厂家介绍
智推产品
动态资讯
-
三线接近开关的两种不同接线方法,一般人我不告诉他!
2025-08-02 18:30:40
-
环形测力传感器的精度会更准确一些吗?
2025-10-01 00:40:50
-
上海索雷博光电
2025-10-04 05:50:42
-
光纤芯数多少决定什么
2025-10-24 00:30:45
科学论文
相关文章
-
-
在电子电工领域,精确的湿度控制是保障配电系统稳定运行、防止设备腐蚀与绝缘老化的关键环节。选择不当的湿度传感器测量方法,轻则导致数据失真,重则引发系统故障,造成巨大经济损失。因此,深入理解各类湿度传感器的测量原理与应用技巧,对于每一位从业者而言都至关重要。本文将系统解析几种主流的湿度传感器测量方法,并分享行业内的最佳实践,助您全面提升环境湿度监控的精准性与可靠
-
对于许多刚接触钣金加工或电子制造的电工同行而言,面对一台精密的激光切割机,既兴奋又忐忑是常态。如何快速上手,安全高效地操作设备完成加工任务,是大家普遍关心的问题。此时,一段详实直观的激光切割机操作全过程入门教程视频就显得至关重要。它不仅能够系统性地展示从开机到关机的完整流程,更能通过视觉化演示,帮助操作者深刻理解设备原理,规避常见风险,这对于保障配电系统稳定
-
在电子电工领域,激光技术的应用日益广泛,从精密加工到医疗设备,从光纤通信到科研实验,都离不开激光能量的精确测量。然而,激光能量计作为关键的电工工具,其测量结果的准确性直接关系到整个工艺或实验的成败。因此,激光能量计检定规程的重要性不言而喻。一套科学、严谨的检定规程,不仅是确保测量数据可靠性的基石,也是满足国际标准与质量体系要求的必要环节。如果您正面临激光能量
加载中....
称呼
电话
单位名称
用途