- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
On-demand CO release for amplification of chemotherapy by MOF functionalized magnetic carbon nanoparticles with NIR irradiation
摘要: Carbon monoxide (CO) gas therapy combined with chemotherapy and photothermal therapy (PTT) is a promising treatment mode for malignant tumor. Herein, we firstly reported doxorubicin (DOX) loaded Mn carbonyl modified Fe (III)-based nanoMOFs (MIL-100) coated PEGylated magnetic carbon nanoparticles (denoted as MCM@PEG-CO-DOX NPs) as theranostics nanoplatforms for near-infrared (NIR)-responded CO-DOX combination therapy. MIL-100 as a good nanocarrier of DOX with high loading capacity can also chelate the Mn carbonyl after a smart modification. Meanwhile, magnetic carbon core possessed photothermal effect, which can convert the NIR light to heat by an 808 nm laser irradiation, resulting in the on-demand release of CO and DOX. As a result, combining with PTT, MCM@PEG-CO-DOX NPs killed tumor efficiently. Moreover, our synthesized MCM@PEG-CO-DOX NPs were capable of realizing tumor dual-mode imaging including magnetic resonance imaging (MRI) and photoacoustic imaging (PAI).
关键词: synergistic treatment,dual-mode imaging,MOFs,CO gas therapy,carbon nanoparticles
更新于2025-09-23 15:23:52
-
Near-Infrared Light Triggered Sulfur Dioxide Gas Therapy of Cancer
摘要: The exploitation of gas therapy platforms holds great promise as a 'green' approach for selective cancer therapy, however, it is often associated with some challenges, such as uncontrolled or insufficient gas generation and unclear therapeutic mechanisms. In this work, a gas therapy approach based on near-infrared (NIR) light triggered sulfur dioxide (SO2) generation was developed, and the therapeutic mechanism as well as in vivo anti-tumor therapeutic efficacy was demonstrated. A SO2 prodrug-loaded rattle-structured upconversion@silica nanoparticles (RUCSNs) was constructed to enable high loading capacity without obvious leakage, and to convert NIR light into ultraviolet (UV) light so as to activate the prodrug for SO2 generation. In addition, SO2 prodrug-loaded RUCSNs showed high cell uptake, good biocompatibility, intracellular tracking ability, and high NIR light triggered cytotoxicity. Furthermore, the cytotoxic SO2 was found to induce cell apoptosis accompanied with the increase of intracellular reactive oxygen species (ROS) levels and the damage of nuclear DNA. Moreover, efficient inhibition of tumor growth was achieved, associated with significantly prolonged survival of mice. Such NIR light-triggered SO2 therapy may provide an effective strategy to stimulate further development of synergistic cancer therapy platforms.
关键词: upconversion nanoparticles (UCNPs),gas therapy,cancer therapy,near-infrared (NIR),sulfur dioxide (SO2)
更新于2025-09-23 15:22:29