修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

111 条数据
?? 中文(中国)
  • Crystallographically oriented porous ZnO nanostructures with visible-blind photoresponse: controlling the growth and optical properties

    摘要: We have grown catalyst-free crystallographically oriented porous ZnO nanostructures by pulsed laser deposition (PLD) method. The deposition was performed in two stages for each sample. In the first stage, self-seeding of ZnO was performed on the quartz substrate, and the angle of deposition (seeding-angle) was varied. Thus, the growth of seeds is different here. In the second stage, the deposition was performed at a glancing angle (at 85?) for the fixed duration of time to grow the nanostructures. These PLD-grown nanostructures acquire highly oriented wurtzite structure. We find that the seeding-angle during the first stage is the determining deposition parameter which influences the growth and other properties of these nanostructures in a controllable manner. The variation in seeding-angle systematically tunes the crystallographic orientation and porosity, which in turn influences the visible-blindness and ultraviolet (UV) photoresponse of these nanonetworks. Here we report the growth of completely defect-free crystallographically oriented nanostructures with necessary porosity for application in visible-blind UV photodetection.

    关键词: Crystalline ZnO,catalyst-free ZnO,glancing angle deposition (GLAD),seeding,pulsed laser deposition (PLD),nanostructures

    更新于2025-11-21 11:03:13

  • Rational design of manganese cobalt phosphide with yolk‐shell structure for overall water splitting

    摘要: The development of low cost, earth-abundant and efficient catalysts for overall water splitting, involving hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), attracts tremendous attention in recent years. Herein, this work reports the preparation of Mn-Co phosphide (Mn-Co-P) bifunctional catalysts with a yolk-shell structure by a facile hydrothermal route. The as-prepared catalysts exhibit excellent catalytic activity with low overpotentials of 66 mV at 10 mA cm-2 for HER and 355 mV at 50 mA cm-2 for OER in 1 M KOH, along with outstanding stability. More importantly, the cell voltage of 1.74 V can achieve the current density of 10 mA cm-2 when assembled as an electrolyzer for overall water splitting. Such superior performance makes the Mn-Co-P being a promising candidate to replace Pt-based noble metal catalysts for electrocatalytic applications.

    关键词: yolk-shell structure,electrochemistry,Mn-Co phosphide,overall water splitting,bifunctional catalyst

    更新于2025-11-21 11:01:37

  • Effective Removal of Tetracycline by Using Biochar Supported Fe3O4 as a UV-Fenton Catalyst

    摘要: Novel Fe3O4-decorate hierarchical porous carbon skeleton derived from maize straw(Fe3O4@MSC) was synthesized by a facile co-precipitation process and a calcination process, which was developed as a UV assisted heterogeneous Fenton-like catalyst. The as-synthesized catalysts were characterized via X-ray powder diffraction(XRD), scanning electron microscope(SEM), transmission electron microscope(TEM), Brunauer-Emmet-Teller(BET) and vibrating sample magnetometer(VSM) at room temperature. The morphology and structure analysis revealed that the as-prepared Fe3O4@MSC retained the original pore morphology of the maize straw material. The non-uniform polyhedral Fe3O4 grew on the whole surface of the MSC, which reduced the aggragation of Fe3O4 and provided more active sites to strengthen the UV-assisted Fenton-like reaction. As a result, the tetracycline(TC) degradation efficiency after 40 min reaction and total organic carbon(TOC) removal efficiency after 2 h reaction of Fe3O4@MSC catalyzing UV-Fenton system reached 99.2% and 72.1%, respectively, which were more substantial than those of Fe3O4@MSC/H2O2(31.5% and 2%), UV/H2O2 system(68% and 23.4%) and UV/Fe3O4/H2O2(80% and 37.5%). The electron spin resonance(ESR) results showed that the ?OH played an important role in the catalytic reaction. A possible degradation pathway of TC was proposed on the basis of the identified intermediates. Overall, the UV assisted heterogeneous Fenton-like process in Fe3O4@MSC improved the cycle of Fe3+/Fe2+ and activated the interfacial catalytic site, which eventually realized the enhancement of degradation and mineralization to tetracycline.

    关键词: Degradation of tetracycline,Heterogeneous Fenton-like catalyst,Fe3O4,Carbon skeleton of maize straw,UV irradiation

    更新于2025-11-14 17:04:02

  • Mg Doped Perovskite LaNiO <sub/>3</sub> Nanofibers as an Efficient Bifunctional Catalyst for Rechargeable Zinc–Air Batteries

    摘要: Rational design of efficient and durable bifunctional catalysts toward oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is important for rechargeable zinc-air batteries. Herein, Mg doped perovskite LaNiO3 (LNO) nanofibers (LNMO NFs) were prepared by a facile electrospinning method combined with subsequent calcination. LNMO NFs show a more positive half-wave potential of 0.69V and a lower overpotential of 0.45 V at a current density of 10 mA cm-2 than those of the pristine LNO NFs. As an air electrode for zinc-air battery, the cell with LaNi0.85Mg0.15O3 NFs catalyst is able to deliver a high specific capacity of 809.9 mAh g-1 at a current density of 5 mA cm-2. It also shows an excellent cycling stability over 110 h at a current density of 10 mA cm?2. DFT calculation results demonstrate that the LNMO surface binds oxygen stronger than LNO, which contributes to enhanced OER activity as observed in our experiments. The results indicate that LNMO NFs is an efficient and durable bifunctional catalyst for zinc-air batteries.

    关键词: bi-functional catalyst,Mg doped LaNiO3 nanofibers,electrospinning,density functional theory calculation,zinc-air batteries

    更新于2025-11-14 17:04:02

  • A spark discharge generator for scalable aerosol CVD synthesis of single-walled carbon nanotubes with tailored characteristics

    摘要: We have designed and built an exhaust-free spark discharge generator for robust aerosol CVD synthesis of single-walled carbon nanotubes. The systematic study has shown the generator to provide a facile and repeatable route to precisely control the size of the catalyst particle and, therefore, carbon nanotube growth. Using a comprehensive set of methods (the analysis of differential mobility of the aerosol particles, optical spectroscopy, scanning and transmission electron microscopy, Raman spectroscopy, and atomic force microscopy) we have revealed the relation between the defectiveness, length, diameter distribution of carbon nanotubes and specific features of a generator such as electrode characteristics (breakdown voltage, composition, and current) as well as the nature of the surrounding media (carrier gas nature, flow rate). The design used has resulted in separation of the nanoparticle formation and carbon nanotube nucleation processes. This provides a mutual independence of the growth parameters and the diameter distribution of the single-walled carbon nanotubes enhancing the scalability of the process. For instance, the breakdown voltage has been shown to have nearly zero effect on diameter and length distribution of carbon nanotubes produced while strictly governing the yield. We focus here on producing specifically short carbon nanotubes (l < 500nm) of pronounced defectiveness for drug delivery and transistor applications.

    关键词: single-walled carbon nanotubes,differential mobility analyzer,catalyst activation,spark-discharge generator,aerosol CVD,floating bed reactor

    更新于2025-11-14 17:03:37

  • Germanium catalyzed vapor–liquid–solid growth and characterization of amorphous silicon oxide nanotubes: comparison to the growth of its nanowires

    摘要: One-dimensional (1D) nanostructures were grown with a simple technique using continuous-wave laser vaporization of a Ge target containing 5 at.% Si in high-pressure (up to 0.9 MPa) Ar gas atmosphere. A maximum amount (~ 30% of all products) of 1D nanostructures was obtained at 0.9 MPa and these nanostructures were identified as amorphous silicon oxide (SiOx) nanotubes (NTs) and attached with crystalline Ge-rich NPs with elongated prolate-like or sphere-like shapes at their tips by transmission electron microscopy (TEM), high-angle annular dark-field-scanning TEM, and energy dispersive X-ray line scan spectrometry. As the Ar pressure decreased from 0.9 to 0.03 MPa, the average diameters, wall thicknesses, and lengths of the NTs decreased from 57.9 to 22.9 nm, 13.2 to 6.7 nm, and 2.1 to 0.2 μm, respectively, and the tip NP size decreased from 139.0 to 41.7 nm. There was a strong correlation among the diameters, wall thicknesses, and lengths of the NTs and tip Ge NP sizes, indicating the role of molten Ge NPs as catalyst seeds for the precipitation of SiOx in a vapor–liquid–solid growth mechanism at high temperature. The SiOx precipitation quantities from the seed NPs for the NTs were compared with those of amorphous SiOx nanowires (NWs) at 0.1–0.9 MPa to clarify the growth mechanism of the NTs. We argue that smaller precipitation quantities of SiOx than those for the NWs play a critical role in the formation of cap structures with different sizes and shapes from the molten Ge NPs and the growth of the NTs.

    关键词: Laser vaporization,Germanium catalyst,Silicon oxide,Nanotube,Nanowire

    更新于2025-09-23 15:23:52

  • Photocatalytic degradation of organic pollutants from wastewater using aluminium doped titanium dioxide

    摘要: The objective of this research was to study the performance of batch and continuous recirculating reactor to photo-degrade dye and synthetic wastewater. Here, Aluminium (Al) was used as the doped metal. The commercially available TiO2 P-25 and Al (NO3)3 was used as a Ti-precursor and doping agent, respectively, via the impregnation method. Various parameters such as the concentration of the doping agent, and calcination temperature were studied. The TiO2 nanocrystal doped with Al was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analyzer (TGA). The photocatalytic performance of Al-doped nanoparticle was quantified by the degradation of methylene blue (MB) solution under a visible light irradiation condition. Its performance was compared against undoped-nano-TiO2. The results showed that Al (NO3)3 solution with a concentration of 0.25% and volume of 100 cm/ml, and calcined at 300 C for 4 h, was the optimum condition of Al-doped nano-TiO2. Furthermore, the highest pseudo-first-order kinetic rate was 0.096 where the doped Al(NO3)3 of 0.75 w/v was used in the batch reactor. The Al-doped nano-TiO2 that was obtained has the potential for use as a photocatalyst for degradation organics pollutant from wastewater under the visible light irradiation. The highest removal of organic pollutants from synthetic wastewater was 75% using TiO2 P-25 alone at 2 g/L dosage. In addition, the removal of organic pollutant by TiO2/doped with Al was 80% at a dosage of 0.5 g/L and was 85% at a dosage of 1 g/L.

    关键词: Batch reactor,Photo-catalyst,Titanium dioxide,Advanced oxidation process

    更新于2025-09-23 15:23:52

  • A new insight for photocatalytic hydrogen production by a Cu/Ni based cyanide bridged polymer as a co-catalyst on titania support in glycerol water mixture

    摘要: A two dimensional Cu/Ni based coordination polymer (CP-1) $0.7(C2H6O2)$1.6(H2O) (4,4?-dipy ? 1,3-di(4-pyridyl)propane) has been demonstrated as a potential co-catalyst on TiO2 support for hydrogen evolution under UV light. CP-1/TiO2 composite exhibits considerable hydrogen production in comparison with the pristine CP-1 and TiO2 (P25), highlighting that the photocatalytic performance is significantly related with the good separation of photo generated e-/h+ pairs. Different wt. % (2.5, 5 and 7.5%) of CP-1 in CP-1/TiO2 composites were tested for photocatalytic hydrogen production in 5 vol % glycerol/water mixture. The 5 wt % CP-1/TiO2 composite displayed the greatest hydrogen production of 9.2 mmol h-1 g-1. The concealed mechanism is divulged on the behalf of results obtained by cyclic voltammetry, photoluminescence and diffused reflectance/UV-visible studies which demonstrate that upon irradiation of UV light, electrons transfer from TiO2 conduction band to CP-1. CP-1 not only grabs the conduction band electrons of titania but also performes as a co-catalyst to reduce the protons into hydrogen. These results are anticipated to direct the forthcoming advancement in creating proficient, cheap semiconductor photocatalysts for solar hydrogen production.

    关键词: Hydrogen,Coordination polymer,Co-catalyst,Photocatalyst,Titanium dioxide

    更新于2025-09-23 15:23:52

  • Benthic microbial fuel cell equipped with a photocatalytic Cu2O-coated cathode

    摘要: In this study, a photocatalytic benthic microbial fuel cell was developed and the cell performance was tested. A photocathode was fabricated by electrodeposition of Cu2O photocatalysts on carbon felt; with a proper deposition time of 15 min, a photocathode with optimal Cu2O compactness and an average Cu2O particle size of 0.97 μm was fabricated and was then covered with an amorphous carbon thin layer. Photoelectrochemical test results prove the pronounced visible light response of the fabricated photocathode. Results show that the coating of carbon thin layer could protect the Cu2O from self-reduction and also improve the photoelectrochemical performance of Cu2O crystalline grains. The photo-benthic microbial fuel cell (BMFC) produces a maximum power density of 249.0 mW m ? 2 and 186.7 mW m?2 under light irradiation and in the dark, which is 17.8 and 13.3 times higher than the common BMFC using carbon felt cathode in parallel, demonstrating the catalytic and photocatalytic effect of the fabricated photocathode. Polarization and EIS results prove the decrease of internal resistance by using the photocathode. The fabricated photocathode could improve the oxygen reduction rate on the cathode side, thus reduce the internal resistance and enhance the BMFC performance.

    关键词: Benthic microbial fuel cells,Photocathode,Nanostructured catalyst,Visible light,Cu2O

    更新于2025-09-23 15:23:52

  • Functionalization of silicon nanowires by iron oxide and copper for degradation of phenol

    摘要: Iron oxide (Fe3O4) and copper-functionalized silicon nanowires (SiNWs) from silicon powder mesh < 500 with a spherical structure have been successfully synthesized as a heterogeneous catalyst for the degradation of phenol. This synthesized catalyst was prepared by nanosilicon wire powders. SiNWs have attracted much attention due their potential application in nanoscale devices such as field effect transistors, chemical or biological sensors, battery electrodes and photovoltaics. The SiNW properties were reinforced by functionalization. The synthesis of this catalyst was done by an in situ method for the decoration of SiNWs. Magnetic metal oxide compounds have been chosen not only to accelerate the catalyst recovery but also to improve the time duration of pollution elimination. Also, Cu nanoparticles were added in order to evaluate the catalytic property. In this work, the maximum amount of phenol degradation was obtained near 99.99%. Hybrid surface morphologies were characterized by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, the Brunauer–Emmette–Teller model and high-performance liquid chromatography.

    关键词: Mesoporous,Fe3O4–Cu-SiNWs catalyst,Phenol degradation,Sphere

    更新于2025-09-23 15:23:52