修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

297 条数据
?? 中文(中国)
  • Tests under irradiation of optical fibers and cables devoted to corium monitoring in case of severe accident in a Nuclear Power Plant

    摘要: The DISCOMS project, which stands for “DIstributed Sensing for COrium Monitoring and Safety”, considers the potential of distributed sensing technologies, based on remote instrumentations and Optical Fiber Sensing cables embedded into the concrete floor under the reactor vessel, to monitor the status of this third barrier of confinement. This paper focuses on the selection and testing of singlemode (SM) optical fibers with limited RIA (Radiation Induced Attenuation) to be compliant with remote distributed instruments optical budgets, the ionizing radiation doses to sustain, and their reduction provided by the concrete basemat shielding. The tests aimed at exposing these fibers and the corresponding sensitive optical cables, to the irradiation doses expected during the normal operation of the reactor (up to 60 years for the European Pressurized Reactor), followed by a severe accident. Several gamma and mixed (neutron-gamma) irradiations were performed at CEA Saclay facilities: POSé?DON irradiator and ISIS reactor, up to a gamma cumulated dose of about 2 MGy and fast neutron fluence (E > 1 MeV) of 6 x 1015 n/cm2. The first gamma test permitted to assess the RIA at various optical wavelengths, and to select three radiation tolerant singlemode fibers (RIA < 5 dB/100 m, at 1550 nm operating wavelength). The second one was performed on voluminous strands of sensitive cables encapsulating selected optical fibers, up to approximately the same accumulated dose, at two temperatures: 30°C and 80°C. A significant increase of the RIA, without any saturation tendency, appeared for fibers inserted into cables, correlated with the increase of the hydroxyl attenuation peak at 1380 nm. Molecular hydrogen generated by the radiolysis of compounds of the cable is at the origin of this phenomenon. A third gamma irradiation run permitted to measure the radiolytic hydrogen production yield of some compounds of a dedicated temperature cable sample. The efficiency of a carbon coating layer over the silica cladding, acting as a barrier against hydrogen diffusion, was also successfully confirmed. Finally, the efficiency of this carbon coating layer has also been tested under neutron irradiation, then qualified as a protection barrier against hydrogen diffusion in the optical fiber cores.

    关键词: carbon coating layer,radiation effects,optical fibers,hydrogen diffusion,gamma,radiolysis,rad-hard optical fiber,neutron,distributed measurement

    更新于2025-09-23 15:21:01

  • Development of Thick Superhydrophilic TiO <sub/>2</sub> –ZrO <sub/>2</sub> Transparent Coatings Realized through the Inclusion of Poly(methyl methacrylate) and Pluronic-F127

    摘要: A thick coating of hierarchically porous double-templated TiO2?ZrO2?PMMA?PF127 with excellent self-cleaning properties and high transmittance has been developed for the first time on glass substrates using a simple dip-coating technique. Comparative studies of this sample with a thick and transparent coating of single-templated TiO2?ZrO2?PMMA have been performed to probe the origin of its exceptional properties. The formation of the composites, successful incorporation of the polymer into the matrix, and the porous nature of the films have been studied. The presence of Ti2+ in the double-templated samples has been confirmed, which suggest the chemisorption of water on the surface of the film. The variation in the self-cleaning properties of the samples on UV-illumination has also been studied. The double-templated film is found to possess the capability of good hydrophilic retention even 2 days after UV-irradiation.

    关键词: PF127,self-cleaning,PMMA,transparent coatings,dip-coating,UV-irradiation,TiO2?ZrO2,superhydrophilic

    更新于2025-09-23 15:21:01

  • The performance and durability of single-layer sol-gel anti-reflection coatings applied to solar module cover glass

    摘要: A significant source of energy loss in photovoltaic (PV) modules is caused by reflection from the front cover glass surface. Reflection from the cover glass causes a loss of ~4% at the air-glass interface. Only a single air-glass interface can be coated on crystalline silicon solar modules as an ethylene-vinyl acetate (EVA) layer is inserted between the cover glass and the silicon absorber. A single-layer anti-reflection coating (ARC) on the outer surface of the cover glass is effective at reducing reflection losses over the wavelength range of most PV devices. The coating investigated in this work reduces the reflectance loss at the glass surface by 74%. However, the long-term durability of sol-gel coatings has not been established particularly for use in hot and humid climates. In this work, we investigate the damage resistance of a single-layer closed-surface hard coat ARC, deposited using sol-gel methods by applying a variety of accelerated weathering, scratch and abrasion test methods.

    关键词: Coating,Hard coat,Anti-reflection,Solution-gelation,Dip-coated

    更新于2025-09-23 15:21:01

  • Si-doping effect on solution-processed In-O thin-film transistors

    摘要: In this work, silicon-doped indium oxide thin-film transistors (TFTs) have been fabricated for the first time by a solution processing method. By varying the Si concentration in the In2O3-SiO2 binary oxide structure up to 15 at.%, the thicknesses, densities, and crystallinity of the resulting In-Si-O (ISO) thin films were investigated by X-ray reflectivity (XRR) and X-ray diffraction techniques, while the produced TFTs were characterized by a conventional three-probe method. The results of XRR analysis revealed that the increase in the content of Si dopant increased the thickness of the produced film and reduced its density, and that all the Si-doped ISO thin films contained only a single amorphous phase even after annealing at temperatures as high as 800 °C. The manufactured ISO TFTs exhibited a reduction in the absolute value of threshold voltage VT close to 0 V and low current in the off-state, as compared to those of the non-doped indium oxide films, due to the reduced number of oxygen defects, which was consistent with the behavior of ISO TFTs fabricated by a sputtering method. The ISO TFT with a Si content of 3 at.% annealed at 400 °C demonstrated the smallest subthreshold swing of 0.5 V/dec, VT of ?5 V, mobility of 0.21 cm2/Vs, and on/off current ratio of about 2×107.

    关键词: silicon-doped indium oxide,solution processing,amorphous oxide semiconductor,thin-film transistor,spin coating

    更新于2025-09-23 15:21:01

  • Synergistic effect of (3-Aminopropyl)Trimethoxysilane treated ZnO and corundum nanoparticles under UV-irradiation on UV-cutoff and IR-absorption spectra of acrylic polyurethane based nanocomposite coating

    摘要: ZnO and corundum (a –Al2O3) nanoparticles were successfully synthesized by aqueous precipitation and sintering techniques respectively. ZnO nanoparticles were effectively coated with (3-aminopropyl)trimethoxysilane (APTMS) by polycondensation method to prevent the photocatalytic activity of ZnO during a UV-weathering study. X-ray diffractogram and FTIR were used to confirm the crystalline structure of as prepared nanoparticles, blue shift of the Al-O bond and the formation of a secondary amine via polycondensation of APTMS over ZnO surface. The prepared APTMS-ZnO, corundum and commercially available surface modified hydrophobic SiO2 (M–SiO2) nanoparticles were used to prepare the acrylic polyurethane (AP: Poly-Macrynal? SM 510N coating resign) bases nanocomposite coating on a polyurethane substrate. Individual and mixed nanoparticles were dispersed into acrylic polyurethane to prepare the coating layer on polyurethane film substrate separately. IR-active and UV-visible regions of the FTIR and UV-Vis spectroscopies were used to investigate the synergistic effect of the nanoparticles on a selected range of the radiative spectrum, especially the UV-resistant and IR-absorption properties of the coated films with and without exposure of UV-irradiations. Polyurethane substrate coated with APTMS-ZnO (2wt%) based acrylic polyurethane-based nanocomposite coating (APUC) layer containing 2 wt% corundum (D50) and 6 wt% M-SiO2 (F50) exhibited 98.77% and 97.60% of UV-resistant property respectively. These results indicate that the visible light transparency and transmittance ability reduced significantly after 500h of UV-irradiation exposure. Both of the activity and deformation have great impact on the IR-absorption property of the APUC.

    关键词: Corundum,UV-resistant,charge-transfer activity,Nanocomposite coating film,IR- absorption,APTMS-ZnO

    更新于2025-09-23 15:21:01

  • AIP Conference Proceedings [Author(s) 3RD INTERNATIONAL SCIENCES, TECHNOLOGY & ENGINEERING CONFERENCE (ISTEC) 2018 - MATERIAL CHEMISTRY - Penang, Malaysia (17–18 April 2018)] - Synthesis of gold nanoparticles (AuNPs) onto anodized titania nanotubes (TNTs) by spin coating technique

    摘要: Gold nanoparticles (AuNPs) have received copious interests due to their unique properties such as small in size, reactive, high surface area and can be potentially applied in myriad fields including physics, chemistry, medicine and material sciences. However, the nanosized of gold particles makes them very reactive and undergo aggregation without protection. For that reason, supporting materials are introduced to prevent the aggregation of the AuNPs. In particular, metal oxide for example, titanium dioxide or titania nanotubes (TNTs) has been used as a support material because of its inertness, high porosity and great surface areas. Nevertheless, achieving precise control of attachment AuNPs on the TNTs substrate by conventional methods such as thermal evaporation and conservative heating are far from satisfactory. Herein, in this work, a new approach has been developed to synthesize controlled and uniformed attachment of AuNPs onto fabricated electrochemically-anodized TNTs by a spin coating technique. This preliminary work used different spin rate of 500, 1000 and 2000 revolutions per minute (rpm), following by heat treatment at 250 °C for 2 hours. The FESEM micrograph showed the anodized TNTs with good morphological structures were successfully fabricated at a voltage of 50 V in a mixture of ethylene glycol containing 0.5 wt. % ammonium fluoride solution, with an average nanotubes diameter of 150 nm. Meanwhile, the attachment of AuNPs on the fabricated TNTs has been effectively achieved at a higher spin rate of 2000 rpm and the EDX analysis confirmed the deposition of AuNPs over the TNTs. The AuNPs-TNTs also were tested for the catalytic reduction of p-nitrophenol (p-NP), in which is discussed shortly in this paper.

    关键词: Gold nanoparticles,spin coating,titania nanotubes,electrochemical anodization

    更新于2025-09-23 15:21:01

  • Carbon coated-Cu nanoparticles as a cocatalyst of g-C3N4 for enhanced photocatalytic H2 evolution activity under visible-light irradiation

    摘要: The photocatalytic H2 evolution is an important technology to solve the energy crisis. The hydrogen evolution rate of the g-C3N4 system in triethanolamine solution as sacrificial agent is obvious higher than in methanol solution. But up to now, most of the Cu nanoparticles as cocatalyst of g-C3N4 photocatalytic systems for hydrogen evolution are performed in methanol solution because Cu nanoparticles are unstable in triethanolamine solution. Here, carbon coated-Cu nanoparticles as cocatalyst of g-C3N4 composites (Cu@C/g-C3N4) were prepared by simple two-steps technology of annealing then grinding. The compositions, morphology and optical and photoelectrochemical (PEC) properties of the composites were characterized by means of physicochemical techniques. The prepared composition was used to generate hydrogen under visible light irradiation in triethanolamine solution. The results displayed that the hydrogen evolution rate of the optimal Cu@C/g-C3N4 was up to 265.1 μmol g-1 h-1 that is close to the activity of 0.5% Pt/g-C3N4, and after four repeated reactions, the photocatalytic activity decreased only by about 15%. The good photocatalytic activity and stability result from Cu nanoparticles increase the transfer efficiency of charge carriers by trapping the photogenerated electrons produced by g-C3N4 and the protective effect of carbon layer on Cu nanoparticles.

    关键词: Cu nanoparticles,Visible-light,Graphite carbon nitride,Photocatalytic H2 evolution,Carbon coating layer

    更新于2025-09-23 15:21:01

  • Enhancement for Potential-Induced Degradation Resistance of Crystalline Silicon Solar Cells via Anti-Reflection Coating by Industrial PECVD Methods

    摘要: The issue of potential-induced degradation (PID) has gained more concerns due to causing the catastrophic failures in photovoltaic (PV) modules. One of the approaches to diminish PID is to modify the anti-re?ection coating (ARC) layer upon the front surface of crystalline silicon solar cells. Here, we focus on the modi?cation of ARC ?lms to realize PID-free step-by-step through three delicate experiments. Firstly, the ARC ?lms deposited by direct plasma enhanced chemical vapor deposition (PECVD) and by indirect PECVD were investigated. The results showed that the ef?ciency degradation of solar cells by indirect PECVD method is up to ?33.82%, which is out of the IEC 62804 standard and is signi?cantly more severe than by the direct PECVD method (?0.82%). Next, the performance of PID-resist for the solar cell via indirect PECVD was improved signi?cantly (PID reduced from ?31.82% to ?2.79%) by a pre-oxidation step, which not only meets the standard but also has higher throughput than direct PECVD. Lastly, we applied a novel PECVD technology, called the pulsed-plasma (PP) PECVD method, to deal with the PID issue. The results of the HF-etching rate test and FTIR measurement indicated the ?lms deposited by PP PECVD have higher potential against PID in consideration of less oxygen content in this ?lm. That demonstrated the ?lm properties were changed by applied a new control of freedom, i.e., PP method. In addition, the 96 h PID result of the integrated PP method was only ?2.07%, which was comparable to that of the integrated traditional CP method. In summary, we proposed three effective or potential approaches to eliminate the PID issue, and all approaches satis?ed the IEC 62804 standard of less than 5% power loss in PV modules.

    关键词: solar cell,potential-induced degradation,anti-re?ection coating,plasma enhanced chemical vapor deposition

    更新于2025-09-23 15:21:01

  • Systematic parametric investigation on the CVD process of polysiloxane nano- and microstructures

    摘要: Amorphous polysiloxane nano- and microstructures with different shapes can be synthesized from trifunctional organosilane precursors. In the present study, various polysiloxane nano- and microstructures have been produced via a chemical vapor deposition process using ethyltrichlorosilane as precursor. The structure formation and shape are the result of a delicate interplay between temperature, absolute amount of water, and relative humidity. The impact of these reaction parameters during a chemical vapor deposition process has been examined. Experiments have been performed to find a correlation between the reaction conditions and the final shape. Scanning electron microscopy data show that different structures like polysiloxane microrings, microrods, sprouts, nanofilaments, and mixtures of them can be synthesized depending on the reaction conditions. Furthermore, the in-depth comparison of the nanofilament diameters illustrates the dominating influence of relative humidity on structure formation. There is a general trend that at a higher value of relative humidity, structures with a larger diameter are formed independent from the temperature. Here, we clearly differentiate between relative humidity as major and absolute amount of water and temperature as minor important adjusting screws defining the thickness and shape of the resulting nano- and microstructures. Based on these observations, we proof the mechanism of the initial step of structure formation. It is shown that nano- and micro-sized water droplets formed on the substrate surface are likely to act as starting points for structure formation. All results described here strongly confirm the recently published droplet assisted growth and shaping mechanism.

    关键词: Superhydrophobicity,Coating,Silicone,Polysiloxane,Surface,Nanofilaments

    更新于2025-09-23 15:21:01

  • A novel star-shaped, cardanol-based bio-prepolymer: Synthesis, UV curing characteristics and properties of cured films

    摘要: Starting from renewable Cardanol, a novel inherently fire-retardant UV curable bio-based prepolymer (AEHCPP) with phosphazene core and six Cardanol arms are prepared in this report. The chemical structure of all newly prepared intermediates compounds and AEHCPP are well-characterized using nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR). UV-curable mixture consisting of AEHCPP and different diluents were formulated and their photopolymerization dynamics were investigated on Photo-calorimetry (photo-DSC). The thermal properties of crosslinked coatings were estimated using thermal analysis technology. Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) results show that glass transition temperatures of all cured films are above room temperature (>30oC), the 5% weight loss temperature in nitrogen is higher than 266oC. The fire-retardant properties are estimated by TGA and all calculated Limiting Oxygen Index (LOI) values are over 24, implying the excellent fire-resistance of cured films.

    关键词: inherent fire-retardancy,bio-based UV coating,thermal stability,star-shaped Bio-based prepolymer,Cardanol,phosphazene core

    更新于2025-09-23 15:21:01