- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Flat concentrator photovoltaic system for automotive applications
摘要: In this paper, we present a novel design and an optical simulation of a ?at concentrator photovoltaic (CPV) system for electric vehicle application. The sunlight concentration component is comprised of a planar waveguide integrated dichroic mirror-coated cone prisms and a mirror-coated lens array. Sunlight re?ects ?rstly at the mirror-coated lens array and then strikes the cone prism of the planar waveguide. The prisms are coated by the dichroic mirrors to divide the solar spectrum into two bands. The low-energy band is transmitted and reaches the GaInAsP/GaInAs dual-junction solar cells. The mid-energy band is re?ected at the prism surface and coupled inside the waveguide. The exit port of the waveguide is attached with GaInP/GaAs dual-junction solar cells. The simulation results demonstrated a maximum electricity conversion e?ciency of 32.88% at the high con- centration ratio. The system thickness is 35 mm, which is as thin as the conventional ?at photovoltaic panel and system allow for a lateral sun-tracking mechanism. This is suitable for installation on the vehicle's roof. The results showed that the presented ?at CPV system is a new approach for a highly e?cient application of solar energy to the electrical vehicle.
关键词: Automotive application,Photovoltaic system,Flat concentrator photovoltaic (CPV),Lateral sun-tracking,Planar waveguide
更新于2025-09-16 10:30:52
-
Design of Curved Fresnel Lens with High Performance Creating Competitive Price Concentrator Photovoltaic
摘要: In this paper, the design of a curved Fresnel lens applying to the concentrator photovoltaic system is proposed by using the edge ray theorem, the Snell’s law, and the conservation of optical path length. The new structure of the curved Fresnel lens can improve significantly the uniformity of sunlight distribution over the solar cell while the concentration ratio can reach a high value of 900 times. The good uniform distribution can be obtained by using the novel idea. The novel idea is based on the uniform sunlight distribution of every groove of the lens so that the whole lens also distributes uniformly the sunlight beam over the receiver. The structure of the lens is built by two surfaces: input surface (or upper surface) as a part of spherical surface and output surface (or lower surface) that consists all grooves of the lens. Matlab program is used to design the input and the output surfaces of the lens. The input surface and the output surface are independent to each other in construction in Matlab. LighttoolsTM software is used to optimize the structure of the novel lens. Furthermore, LighttoolsTM is also used to perform a simulation to examine the efficiency of the lens in concentrator photovoltaic (CPV) system by using the light source with a wide spectrum of 380 – 1600 nm. The results show that the lens has an acceptance angle of 0.80 and good optical efficiency (>85%).
关键词: concentrator photovoltaic (CPV),Fresnel lens,solar energy,high concentration ratio,multi-junction solar cells,uniform irradiance distribution,CPV without secondary optical element (SOE)
更新于2025-09-12 10:27:22
-
AIP Conference Proceedings [AIP Publishing 15th International Conference on Concentrator Photovoltaic Systems (CPV-15) - Fes, Morocco (25–27 March 2019)] 15th International Conference on Concentrator Photovoltaic Systems (CPV-15) - Finite element analysis of cooling mechanism by flat heat-sinks in ultra-high CPV systems
摘要: The potential cost reduction of Concentrator photovoltaic (CPV) systems is closely related to the concentration factor because higher light concentrations imply lower amount of semiconductor material required for the solar cells. However, the thermal management at such ultra-high light fluxes is difficult. The use of small-sized solar cells is beneficial for improving the thermal management. Among the possible cooling strategies, the use of flat-plate heat-sinks for passive cooling, if feasible, would be the simplest way to dissipate heat and would accelerate the development of ultra-high CPV prototypes. In this work, a thermal 3D finite-element model is used to investigate the possibilities of flat-plate heat-sinks for passive cooling at concentration ratios within 2,000-10,000 suns. Results show that a micro solar cells of 1mm x 1mm area can be thermally handled with conventional Aluminium flat plate heat-sinks up to 10,000 suns.
关键词: ultra-high concentration,passive cooling,Concentrator photovoltaic (CPV),thermal management,flat-plate heat-sinks
更新于2025-09-11 14:15:04